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We applied the bidirectional reflectance distribution function (BRDF) model consisting of diffuse, quasi-
specular, and glossy components to the Monte Carlo modeling of spectral effective emissivities for
nonisothermal cavities. A method for extension of a monochromatic three-component (3C) BRDF model
to a continuous spectral range is proposed. The initial data for this method are the BRDFs measured in
the plane of incidence at a single wavelength and several incidence angles and directional–hemispherical
reflectance measured at one incidence angle within a finite spectral range. We proposed the Monte Carlo
algorithm for calculation of spectral effective emissivities for nonisothermal cavities whose internal sur-
face is described by the wavelength-dependent 3C BRDF model. The results obtained for a cylindroco-
nical nonisothermal cavity are discussed and compared with results obtained using the conventional
specular–diffuse model. © 2012 Optical Society of America
OCIS codes: 120.5630, 120.5700, 230.6080, 290.1483.

1. Introduction

Blackbody cavities imitating the perfect blackbody
are widely used as calibration sources in optical
radiometry and radiation thermometry [1,2] since
spectral characteristics of their radiation can be com-
puted using Planck’s law. The distinction between
thermal radiation of the real-world cavities and that
of a perfect blackbody is described by the effective
emissivity, which is determined by the cavity geome-
try, optical properties of the cavity walls, viewing
conditions (i.e., geometry of collecting the cavity ra-
diation), and the temperature distribution over the
radiating surface. The spectral local directional effec-
tive emissivity of a nonisothermal cavity is defined as

εe�λ; ξ;ω; Tref � �
Lλ�λ; ξ;ω�

Lλ;bb�λ; Tref �
; (1)

where λ is the wavelength, ξ and ω are the positional
and directional vectors, respectively, and Lλ and Lλ;bb
are the spectral radiance (inW⋅m−3

⋅sr−1) of the cavity
and the perfect blackbody at a reference tempera-
ture Tref .

Since the cavity is nonisothermal, the reference
temperature Tref has to be introduced and assigned
to the perfect blackbody for uniqueness of the effec-
tive emissivity determination. Tref itself has no spe-
cific physical meaning; its choice, in general, is
arbitrary. Depending on the choice of Tref , the spec-
tral effective emissivity of a nonisothermal cavity can
take any positive value. The spectral radiance and
radiance temperature of a cavity do not change
their values at any choice of Tref . In practice, the
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temperature measured by a contact temperature
sensor is commonly used for Tref to keep effective
emissivities of the nonisothermal cavity comparable
with those for the isothermal case. The denominator
in Eq. (1) is calculated according to Planck’s law:

Lλ;bb�λ; Tref � � c1

�
π · λ5

�
exp

�
c2

λ · Tref

�
− 1

��
−1
; (2)

where c1 � 3.74177153�17� × 10−16 W⋅m2 and c2 �
1.4387770�13� × 10−2 m⋅K are the first and second
radiation constants, respectively [3].

Spectral effective emissivities corresponding to the
specific viewing conditions can be obtained by inte-
gration of εe�λ; ξ;ω; Tref � over appropriate spatial
and angular domains.

Equation (1) implies that the temperature of the
environment is much lower than that of the cavity
so one can neglect the contribution of the background
radiation falling on the cavity aperture, partially re-
flected by the cavity, and increasing the emergent
radiant flux. When the contribution of the back-
ground radiation is non-negligible, it can be taken
into account by considering the background as a per-
fect blackbody at a temperature Tbg. If spectral effec-
tive emissivities εe�λ; ξ;ω� of an isothermal cavity
and εe�λ; ξ;ω; Tref � of a nonisothermal cavity are
known for zero background, correction for the back-
ground radiation can be done analytically:

εe�λ; ξ;ω; Tref ; Tbg� � εe�λ; ξ;ω; Tref � � �1 − εe�λ; ξ;ω��

×
exp

�
C2

λTref

�
− 1

exp
�

C2
λTbg

�
− 1

: (3)

Hereinafter, we will suppose that the background
radiation is absent.

Another important quantity is the radiance tem-
perature TS of a blackbody radiator. At this tempera-
ture, the spectral radiance of a perfect blackbody at a
particular wavelength λ equals the spectral radiance
emitted by the cavity radiator at the same wave-
length. The radiance temperature of a cavity can
be expressed as

TS�λ; ξ;ω; Tref � � c2

8>><
>>:
λ ln

2
641�

exp
�

c2
λTref

�
− 1

εe�λ; ξ;ω; Tref �

3
75
9>>=
>>;

−1

: (4)

Measurements of effective emissivities are extremely
difficult and can be usually conducted under condi-
tions that differ from actual operational conditions
of the blackbody radiator [4]. Therefore, computa-
tional methods remain an indispensable tool for
determining effective emissivities of cavity radiators
at the stages of their design and metrological
certification.

Numerous computational methods have been de-
veloped for calculating effective emissivities during

past decades (see, e.g., reviews [5,6]). The greatest
difficulty in precise calculations of effective emissiv-
ities is the accounting for angular distributions of op-
tical radiation emitted by and reflected from the
internal surface of a cavity. At the same time, these
distributions are often the crucial factors for the
precision of the effective emissivity calculation.

2. Statement of the Problem

In the earlier works on calculation of the effective
emissivities, the perfect diffuse (Lambertian) model
of reflection has been employed. With the extensive
use of digital computers, the Monte Carlo ray tracing
(MCRT) method began to dominate in the effective
emissivity calculations (see, e.g., [7–12]). Currently,
the uniform specular–diffuse (USD) model of reflec-
tion is the most widespread in this area [8–11]. The
USD model consists of the perfect diffuse (Lamber-
tian) and the angle-independent perfect specular
components. The USD model is more realistic than
each of its parts taken separately but might be too
crude an approximation for blackbodies intended
for calibrations of the highest precision.

Angular distribution of reflected radiation is com-
prehensively described by the bidirectional reflec-
tance distribution function (BRDF) [13], which
depends on both incidence and viewing directions.
In practice, the BRDF is measured for several inci-
dence angles and for discrete set of viewing angles
only. Hence, the parametric BRDF models fitted to
the experimental data and capable to correctly
predict BRDF values for all incidence and viewing
directions are required to use in MCRT.

The three-component (3C) monochromatic BRDF
model developed especially for MCRT applications
and the algorithm for fitting the model parameters
to the experimental data was proposed in [14]. This
model was incorporated into the MCRTalgorithm for
calculating effective emissivities of isothermal cav-
ities for the same wavelength at which the BRDF
is measured. However, real-world cavity radiators
are always nonisothermal. Besides, radiometric cali-
brations frequently have to be conducted for many
wavelengths within certain spectral range.

The main objectives of this work are (i) to make the
3C BRDF model wavelength dependent, (ii) to incor-
porate the wavelength-dependent model into the
MCRT algorithm for nonisothermal cavities, and
(iii) to compare results obtained using the 3C and
the USD models.

3. 3C BRDF Model for Monochromatic Radiation

In the spherical coordinate system, the BRDF [13] is
defined as

f r�λ; θi;ϕi; θv;ϕv� �
dLλ;v�λ; θi;ϕi; θv;ϕv�

dEλ;i�λ; θi;ϕi�

� dLλ;v�λ; θi;ϕi; θv;ϕv�
dLλ;i�λ; θi;ϕi�dΩi

�sr−1�; (5)
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where θ and ϕ are the polar and azimuthal angles,
respectively, Lλ is the spectral radiance, Eλ is the
spectral irradiance, Ω is the solid angle; subscripts
“i” and “v” denote incidence and viewing directions,
respectively. For brevity, we will omit the dependence
on the wavelength throughout this section.

We will consider only isotropic surfaces, which are
invariant with respect to rotation around its normal
(i.e., f r depends on jϕi − ϕvj instead of ϕi and ϕv)
and the BRDFs measured for unpolarized radiation.
In the case of polarimetric BRDFmeasurements, half
the sum of the mutually perpendicular polarimetric
BRDFs should be used (see, e.g., [15]). A physically
plausible BRDF model must obey the reciprocity
principle and the energy conservation law.Thedepen-
dence of the directional–hemispherical reflectance
(DHR) on the incidence angle is expressed as

ρ�θi� �
Z

2π

0
dϕ

Z π
2

0
f r�θi;ϕi; θv;ϕv� sin θv cos θvdθv:

(6)

The most accurate effective emissivity calculations
must be based on the experimentally determined
BRDF of the cavity internal surface. As mentioned
above, all possible combinations of the incidence
and viewing directions are required for MCRT while
BRDFmeasurements are mostly incomplete (very of-
ten, they are conducted in the plane of incidence, at
one wavelength, and for several incidence angles
only). Therefore, the mathematical models (analyti-
cal expressions, as a rule) are necessary to fill the gaps
in experimental data without violating such BRDF
fundamental properties as reciprocity and energy
conservation. Numerous BRDF models for a variety
ofmaterials reflecting optical radiation due to various
kinds of scattering phenomena have been developed
in computer graphics, remote sensing, and other
areas (see, e.g., [16,17]), but not all of them are suita-
ble for MCRT.

The 3C BRDF model [14] developed earlier for
MCRT calculations of effective emissivities of iso-
thermal blackbody cavities is expressed by the
weighted sum of three components:

f r3C;� kdf r;d � kqsf r;qs � kgf r;g; (7)

where f r;d, f r;qs, and f r;g are BRDFs of diffuse, quasi-
specular, and glossy components, respectively; 0 ≤ kd,
kqs, kg ≤ 1 and

kd � kqs � kg � 1: (8)

For the diffuse component with the partial (this
qualifier is introduced ad hoc by the authors) diffuse
reflectance Rd, the Lambertian BRDF is used:

f r;d � Rd∕π: (9)

For the quasi-specular and glossy components, the
BRDF model proposed in [18] was adopted:

f r;qs;g�θi; θv;ϕ�

� Rqs;g�θh�
πσqs;g

exp
�
−

�
tan θh
σqs;g

�
2
�

×
2�1� cos θi cos θv − sin θi sin θv cos ϕ�

�cos θi cos θv�4
; (10)

where σqs and σg are dimensionless parameters,
which are determined the angular widths of quasi-
specular and glossy lobes, respectively; θh is the
angle between the normal to the surface and the
bisector of the incidence and the viewing directions.

The slightly modified Schlick’s approximation [19]
of Fresnel’s reflection law was used for angular
dependences of Rqs�θi� and Rg�θi�:

Rqs;g�θi�

�
8<
:
Rqs;g;0 ��1−Rqs;g;0��1− cos θh�5 if Rqs;g;0 > 0

0 if Rqs;g;0 � 0
;

(11)

where Rqs;0 and Rg;0 are the partial reflectances
for the quasi-specular and glossy components,
respectively.

Actually, the quasi-specular and the glossy compo-
nents differ only in the ranges of values taken
by parameters σqs and σg∶σqs ≪ σg, so the quasi-
specular component has a narrow spike while the
glossy component hasmore wider lobe. Figure 1 pres-
ents an example of plots in the spherical coordinate

Fig. 1. (Color online) Plots of the 3C BRDF in spherical coordi-
nates for three incidence angles θi; kd � 0.7, kqs � 0, kg � 0.3,
σg � 0.1,Rd � Rg�0°� � 0.5. All BRDFs are normalized by dividing
by their maxima. The incident and specularly reflected rays are
shown.
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system for the 3C BRDF (very narrow quasi-specular
spike is depicted as a specularly reflected ray).

Although the BRDF model Eq. (10) was initially
proposed in [18] for random rough surfaces, it was
found that it satisfactorily reproduces glossy lobes
of different nature, for instance, those formed by
volumetric scattering within layers of various paints
and coatings.

The 3C BRDF model has eight parameters: kd, Rd,
kqs, Rqs, σqs, kg, Rg, and σg. Three of them are related
through Eq. (8). In [14], the particle swarm optimiza-
tion method [20] was used for fitting a 3C model to
the BRDF values measured in the plane of incidence
and, accordingly, to determine the model’s para-
meters. When parameters are found, one can recover
the three-dimensional BRDF, integrate numerically
the expression for the 3C BRDF according to
Eq. (6), and obtain the DHR value for any incidence
angle. Because of linearity of integration in Eq. (6),
the DHR ρ3C equals

ρ3C�θi� � ρd � ρqs�θi� � ρg�θi�; (12)

where partial DHRs ρd, ρqs, and ρg are computed as

ρd � kdRd; (13)

ρqs;g�θi� � kqs;g

Z
2π

ϕ�0

Z
π∕2

θv�0
f r;qs;g�Rqs;g;0; θi;; θv;ϕ�

× sin θv cos θvdθvdϕ: (14)

4. Wavelength-Dependent 3C BRDF Model

Our approach is based on the assumption that two
kinds of measurement data are available: (i) the
spectral DHR measured at one incidence angle θi;0
for a wavelength range �λmin; λmax� (the spectral
DHR is usually measured using conventional devices
such as integrating sphere accessory for spectral
measuring equipment) and (ii) the BRDF measured
in the plane of incidence at one wavelength λ0 ∈

�λmin; λmax� and for several incidence angles.
We assumed that parameters kd, kqs, kg, σqs, and σg

derived from the 3C model fitting in the plane of in-
cidence at wavelength λ0 as well as the relative con-
tributions of the diffuse, quasi-specular, and glossy
components of the DHR do not change their values
throughout the wavelength range �λmin; λmax�; in other
words, the shape of BRDF is supposed to be un-
changeable within this spectral range. The spectral
dependence of DHR is determined by spectral depen-
dences of partial reflectances Rd�λ�, Rqs;0�λ�, and
Rg;0�λ�, which, in turn, determine spectral depen-
dences of partial DHRs ρd, ρqs, and ρg. Relative con-
tributions of DHR components can be computed for
the wavelength λ0 and incidence angle θi;0:

8<
:
γd � ρd�λ0�∕ρ��θi;0; λ0�
γqs�θi;0� � ρqs�θi;0; λ0�∕ρ��θi;0; λ0�
γg�θi;0� � ρg�θi;0; λ0�∕ρ��θi;0; λ0�

; �15�

where the measured spectral DHR is asterisked; par-
tial DHRs ρd�λ0�, ρqs�θi;0; λ0�, and ρg�θi;0; λ0� are com-
puted using Eqs. (13) and (14) for the wavelength λ0.

Once partial DHRs ρd�λ0�, ρqs�θi;0; λ0�, and
ρg�θi;0; λ0� are computed we can determine γd,
γqs�θi;0�, and γg�θi;0� according to Eq. (15). Since it
was supposed that γd, γqs�θi;0�, and γg�θi;0� do not
depend on wavelength for all λ ∈ �λmin; λmax�, one
can obtain three independent equations to find Rd,
Rqs;0, and Rg;0:

γdρ
��θi;0; λ� � kdRd�λ�; (16)

γqsρ
��θi;0; λ� � kqs

Z
2π

ϕ�0

Z
π∕2

θv�0
f r;qs�Rqs;0�λ0�; θi;0; θv;ϕ�

× sin θv cos θvdθvdϕ; (17)

γgρ
��θi;0; λ� � kg

Z
2π

ϕ�0

Z
π∕2

θv�0
f r;g�Rg;0�λ0�; θi;0; θv;ϕ�

× sin θv cos θvdθvdϕ: (18)

They have to be solved for each λ ∈ �λmin; λmax�. The
solution of Eq. (16) is straightforward:

Rd�λ� � γdρ
��θi;0; λ�∕kd: (19)

Equations (17) and (18) are nonlinear equations for
Rqs;0 and Rg;0, respectively. We used Brent’s root-
finding method [21] and two-dimensional adaptive
quadratures [22] to compute integrals in Eqs. (17)
and (18).

5. MCRT Algorithm for Spectral Effective Emissivities
of Nonisothermal Cavities

The MCRT algorithm for computing the effective
emissivity of an isothermal cavity whose internal
surface can be described using the 3C BRDF model
is based on Kirchhoff ’s law for the cavity effective
emissivity and absorptance [14]. Because of thermo-
dynamic equilibrium violation, Kirchhoff ’s law can-
not be applied to nonisothermal cavities, but the
Helmholtz reciprocity principle remains in force.
This allows employing the backward ray tracing.
The MCRT algorithm for nonisothermal cavities re-
quires no changes compared with that for the isother-
mal case in parts related to generation of random
directions for reflected rays, coordinate transforma-
tions, and finding the point of intersection of a ray
with the cavity surface. A large number n of rays
have to be launched into a cavity; their start points
and directions are generated randomly, according to
the viewing conditions, which have to be modeled.
The statistical weight w0k � 1 is assigned to the
kth ray before tracing. Before each reflection, the
type of reflection is chosen with the help of pseudor-
andom number u uniformly distributed from 0 to 1. If
u ≤ kd, a random ray is generated according to
the Lambertian BRDF; otherwise, if u ≤ kd � kqs,
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reflection is quasi-specular; otherwise it is glossy.
After each reflection, the statistical weight is multi-
plied by the factor that is determined by the
sampling procedure (see details in [14] and [18]):

wj;k � wj−1;k ×

8>>><
>>>:

Rd�λ� for diffuse reflection
2Rqs�λ;θi;j−1;k�

�1�cos θi;j−1;k∕ cos θv;j−1;k� for quasi-specular reflection
2Rg�λ;θi;j−1;k�

�1�cos θi;j−1;k∕ cos θv;j−1;k� for glossy reflection
; (20)

where θi;jk and θv;jk are the incidence and viewing
(reflection) angles, respectively; the index “j” denotes
the number of reflection.

The ray is traced until it escapes the cavity; the
backward ray tracing considers the last reflection
point as the emission point of the ray propagated
in the opposite direction, i.e., toward the observer.
At the jth reflection point, the spectral radiance of
the backward propagated kth ray comprises the
radiation emitted and reflected at this point and is
expressed by the following recurrence relation:

Lλ; j;k�λ� � �1 −wj�1;k�Lλ;bb�λ; Tj�1;k� �wj�1;kLλ; j�1;k;

(21)

where Lλ;bb is the spectral radiance of the perfect
blackbody expressed by Planck’s law, Tj�1;k is the
temperature of a cavity surface at the point of the
j� 1th reflection of the kth ray.

The spectral radiance of the kth backward propa-
gated ray leaving the cavity can be written as

Lλ;k�λ� � �1 −w1;k�λ��Lλ;bb�λ; T1;k�

�
Xmk

j�2

�1 −wj;k�λ��Lλ;bb�λ; Tj;k�
Yj−1
l�1

wl;k�λ�; (22)

where mk is the number of reflections in the kth ray
trajectory. Finally, the estimator for the spectral
directional effective emissivity of a cavity at a wave-
length λ is

εe�λ; Tref � �
1

nLλ;bb�λ; Tref �
Xn
k�1

Lλ;k�λ�: (23)

6. Numerical Example

To demonstrate the practical implementation of the
algorithm and investigate its potential, we present
numerical results obtained for normal and conical
viewing conditions of a nonisothermal cavity formed
by a conical bottom, a cylindrical middle part, and a
flat diaphragm as it is depicted in Fig. 2. The follow-
ing geometrical parameter of the cavity was used
for all numerical experiments: conical bottom vertex
angle β � 60°, the cylindrical part radius rc � 1,

the aperture radius ra � 0.75, and the cavity length
z2 � 6.

Normal viewing conditions correspond to the case
of the radiometer’s optical system focused at infinity;

the radius rb of the viewing beam can be defined by
an external diaphragm. These viewing conditions are
modeled by generating rays that are parallel to the
cavity axis and uniformly distributed over the circu-
lar cross section of the viewing beam. Conical
viewing conditions reproduce the pinhole model
mimicking the optical system that collects the cavity
radiation onto the detector and are defined by the an-
gular field of view (FOV) ψ � 10° and the axial coor-
dinate zf of the focal point. Such viewing conditions
are modeled by generating random rays originated
in the vertex of a ray cone and uniformly distributed
within the conical solid angle with the apex
angle ψ. The ray cone vertex can take a position
zf ;min ≤ zf ≤ zf ;max, where zf ;min and zf ;max are deter-
mined by the values of ra and ψ (in our case,
zf ;min ≈ −2.57, xf ;max ≈ 14.57). If xf < 0, the focal point
(ray cone vertex) is behind the cavity bottom.

Three simple (axisymmetric piecewise-linear, see
Fig. 2) but realistic temperature distributions were

Fig. 2. (Color online) Schematics of cavity section, viewing
conditions, and axial temperature distributions used for numerical
experiments.
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used for calculations. For all distributions, the
reference temperature Tref is equal to the tempera-
ture of the bottom vertex T0 � 350 K; the tempera-
ture of the diaphragm is uniform and equal to the
temperature of the cylindrical part edge T2 �
345 K; Tbg � 0 K. The temperature T1 at the inter-
face of the conical bottom and cylindrical part is
equal to 349.5, 349, and 348 K for the first, the
second, and the third temperature distribution,
respectively.

We supposed that all internal surface of a cavity is
coated with the almost specular black paint Z302
widely used until now in low-temperature blackbo-
dies and thermal detectors of optical radiation [23].
Its in-plane BRDF was measured at wavelength of
10.6 μm [24]. Figure 3 presents logarithmic plots of
themeasured in-planeBRDFand the fitted 3Cmodel.
The spectral DHR of Z302 wasmeasured from near to
far IR [25] at the incidence angle θi;0 � 8° using the
Fourier-transform IR spectrometer and the integrat-
ing sphere coated with diffuse gold [26,27]; however,
we used only the wavelength range from 8 to 12 μm
near the maximum of the Planck distribution at
350 K. Within this spectral range, our assumption
that parameters kd, kqs, kg, σqs, and σg arewavelength
independent seems plausible. Figure 4 shows the
spectral DHR ρ�λ; θi;0� (measured, smoothed, and
sampled points) and its computed partial spectral
DHRs ρd�λ; θi;0�, ρqs�λ; θi;0�, and ρg�λ; θi;0�.

We traced 106 rays for calculation of each spectral
effective emissivity value. Repeated calculations
show that the root mean square of the stochastic er-
ror in the spectral effective emissivity does not ex-
ceed 2⋅10−4 and is less than 1⋅10−4 in most cases.
We have chosen the cavity black enough to neglect
the background radiation. For the cavity with the
uniform temperature of 350 K, the change of the
spectral radiance at 10.6 μm introduced by the back-
ground radiation at 300 K is less 0.03%. This value is
comparable with the uncertainty of calculations;
therefore, the results obtained for Tbg � 0 K are
applicable to all reasonable values of the background
temperature.

A. Normal Viewing Conditions

Spectral effective emissivities computed for the view-
ing beam radii rb � 0.25 and rb � 0.75 are presented
in Fig. 5. The effective emissivity for the isothermal
case is greater than 0.9995. A decrease of the cavity
walls temperature toward the aperture leads to de-
crease of the effective emissivities of nonisothermal
cavity in comparison with isothermal one; the more,
the greater temperature gradient along the cavity
bottom. The lower values of the effective emissivities
for rb � 0.75 in comparison with those for rb � 0.25
show that the temperature nonuniformity of the di-
rectly viewable area of a cavity has the greatest im-
pact on the effective emissivity and thus confirms the
analogous conclusion made earlier for the USD mod-
el of reflection [9]. Our finding agrees with the well-
known fact that the minimization of the viewable
area softens the requirements for the temperature
uniformity of the radiating surface. Therefore, at
the design of cavity radiators, the most attention

Fig. 3. (Color online) 3C BRDF model (lines) fitted to Z302 black paint BRDFs measured at 10.6 μm (symbols).

Fig. 4. Spectral DHR (measured, smoothed, and sampled from
the smoothed curve) and partial spectral DHRs for diffuse, qua-
si-specular, and glossy components. Sampled values were used
for numerical experiments.
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should be paid to ensuring temperature uniformity of
viewable areas of a cavity surface; efforts to provide
temperature uniformity of the entire cavity may be
excessive.

Figure 6 shows dependences of the cavity radiance
temperatures at λ � 10.6 μm on the viewing beam
radius rb for three temperature distributions. These
dependences are almost linear, which is explained by
the linear and small temperature variation across
the cavity bottom: the spectral radiance depends
on temperature almost linearly within the range
from 348 to 350 K.

B. Conical Viewing Conditions

Figures 7 and 8 show spectral effective emissivities
computed for conical viewing conditions at four posi-
tions zf of the focal point (the vertex of the conical
viewing beam). It should be noted that, in distinction
from the normal viewing conditions, the rays hit
the cylindrical part of the cavity if zf greater than
approximately 13.

Spectral emissivity patterns obtained for xf � −2.5
and xf � 2.5 are similar though not identical because
(i) the cavity bottom is observed at different angles

and (ii) viewable areas are slightly different for these
two cases.

Despite the complexity of elaborating universal
guidelines for the focal point optimal arrangement
(behind or in front of the cavity bottom), we can de-
duce the following simple rule: the first (in terms of
backward ray tracing) incidence angle should be
minimal (since the reflectance increases for most
materials with increasing the incidence angle), but
the specularly reflected ray should not escape a
cavity after the first reflection.

Figures 7 and 8 show that the influence of tem-
perature nonuniformity is stronger in the shortwave
spectral range. This is also consistent with the find-
ings obtained earlier [9] for the USD model of
reflection.

Figure 9 presents dependences of radiance tem-
peratures at 10.6 μm computed for three tempera-
ture distributions on the focal point position zf . As
for normal viewing conditions, these dependences
are almost linear while only the cavity bottom is di-
rectly viewable. For zf grater than approximately 13,
the rays begin to fall onto the cylindrical part at graz-
ing angles. Because of increase of reflectance at large
incidence angle and the discontinuous change of the
axial temperature gradient, all radiance tempera-
ture curves undergo a dip for zf > 13.

C. Comparison with the USD Reflection Model

In order to explore how large the difference is be-
tween results obtained with the 3C BRDF model
and those obtained with the USDmodel of reflection,
radiance temperature dependences presented in
Figs. 6 and 9 were recomputed for the USD model
with the same spectral DHR ρ�λ�. Since one-to-one
correspondence between eight parameters of the
3C model and the diffusity D � ρd�λ�∕ρ�λ� of the USD
model is impossible, we adjusted the diffusity value
so that ρ⋅D for the USD model equals ρd for the 3C
model at λ � 10.6 μm. The obtained value D � 0.03
was used for calculations. Figures 10 and 11 show

Fig. 5. (Color online) Spectral effective emissivities at normal
viewing conditions for rb � 0.25 (upper graph) and rb � 0.75 (low-
er graph) computed for isothermal cavity and for three tempera-
ture distributions.

Fig. 6. (Color online) Dependences of the radiance temperatures
at 10.6 μm on the viewing beam radius rb of normal viewing con-
ditions computed for three temperature distributions.
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deviations of radiance temperatures at 10.6 μm com-
puted using the USD reflection model from those
computed using 3C BRDF model against param-
eters rb and zf of the normal and conical viewing
conditions, respectively.

It was found that, for the normal viewing condi-
tions, the difference between radiance temperatures
computed using two models grows with the rb in-
crease but does not exceed 5 mK. This growth can
be attributed to the finite width of the quasi-specular
and the glossy lobes of the 3C model. As was shown
for an isothermal cavity in [14], the finite width of the
reflected beam in the 3C model leads to additional
reflection from the cavity diaphragm, while the infi-
nitely thin specularly reflected ray in the USDmodel
always undergoes four successive reflections before
escaping the cavity.

For the case of the conical viewing conditions, the
difference is also relatively small while the viewing
beam spans the cavity bottom only. As soon as rays
begin to fall onto the cylindrical part, the difference
between radiance temperatures computed using the
3C and the USDmodels increases sharply. This effect

is due to the angular dependence of the quasi-
specular and the glossy components of the 3C BRDF
model on the incidence angle: rays fall onto the

Fig. 7. (Color online) Spectral effective emissivities at conical
viewing conditions for zf � −2.5 (upper graph) and zf � 2.5 (lower
graph) computed for isothermal cavity and for three temperature
distributions.

Fig. 8. (Color online) Spectral effective emissivities at conical
viewing conditions for zf � 6 (upper graph) and zf � 14.5 (lower
graph) computed for isothermal cavity and for three temperature
distributions.

Fig. 9. (Color online) Dependences of radiance temperatures on
the focal point position zf of conical viewing conditions computed
for three temperature distributions.
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cylindrical part of the cavity at grazing angles for
which partial DHRs of these components increase
rapidly (and the emissivity decreases correspond-
ingly), while the reflectance of the USD model is
angle-independent.

Blurry stepwise changes of curves in Figs. 10 and
11 occur because all specularly reflected radiation for
the USD model is concentrated within the infinitely
thin specular component. The effective emissivity
and the radiance temperature dependences on the
viewing conditions parameter are determined to a
great extent by changing the number of reflections
for each specularly reflected ray until it escapes
the cavity. Distribution on incidence angles for rays
within a conical FOV as well as presence of a small
but nonzero diffuse component “blur” stepwise
changes of the effective emissivity and the radiance
temperature.

These examples show that the use of the USD re-
flection model instead of 3C BRDF model can, in
some cases, lead to noticeable errors in calibration
of various radiometric equipment including IR radia-
tion thermometers due oversimplified representa-
tion of the specular component.

All the numerical values in this section correspond
to the example considered and do not allow deriving
general recommendations; nonetheless, one can
affirm that the maximal discrepancy between results
computed using the 3C and the USD models is
expected for cavities that have large angles between
directions of observation and the normals to the
directly viewable surface.

7. Conclusion

In this paper, we have presented the application of
the 3C BRDFmodel to the MCRT calculation of spec-
tral effective emissivities for nonisothermal black-
body cavities. An approach to extension of the
monochromatic 3C model to the continuous spectral
range was proposed. The MCRT algorithm for com-
puting the spectral effective emissivities of the
nonisothermal cavity was described and illustrated
by the results of numerical experiments.

We have attempted to analyze some patterns in
behavior of the results obtained; however, all the
quantitative recommendations can only have task-
specific character due to the large number of the
affecting factors. To provide the highest precision
in the effective emissivity calculations, every cavity
has to be modeled individually, taking into account
all geometric, optical, and temperature conditions.
One thing is certain: the use of too simplified models
of reflection (in particular, the USD model) for the
effective emissivity calculations can result in
non-negligible errors.

References
1. J. Hollandt, J. Seidel, R. Klein, G. Ulm, A. Migdall, and M.

Ware, “Primary sources for use in radiometry,” in Optical
Radiometry, A. C. Parr, R. U. Datla, and J. L. Gardner, eds.
(Academic, 2005), pp. 213–290.

2. J. Hartmann, J. Hollandt, B. Khlevnoy, S. Morozova, S.
Ogarev, and F. Sakuma, “Blackbody and other calibration
sources,” in Radiometric Temperature Measurements. I.
Fundamentals, Z. M. Zhang, B. K. Tsai, and G. Machin,
eds. (Academic, 2010), pp. 241–295.

3. P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA recom-
mended values of the fundamental physical constants: 2010,”
http://physics.nist.gov/cuu/Constants/Preprints/lsa2010.pdf.

4. S. N. Mekhontsev, A. V. Prokhorov, and L. N. Hanssen, “Ex-
perimental characterization of blackbody radiation sources,”
in Radiometric Temperature Measurements. II. Applications,
Z. M. Zhang, B. K. Tsai, and G. Machin, eds. (Academic,
2010), pp. 57–136.

5. R. E. Bedford, “Calculation of effective emissivities of cavity
sources of thermal radiation,” in Theory and Practice of Radia-
tion Thermometry, D. P. DeWitt and G. D. Nutter, eds. (Wiley,
1988), pp. 653–772.

6. A. V. Prokhorov, L. M. Hanssen, and S. N. Mekhontsev,
“Calculation of the radiation characteristics of blackbody ra-
diation sources,” in Radiometric Temperature Measurements.
I. Fundamentals, Z. M. Zhang, B. K. Tsai, and G. Machin, eds.
(Academic, 2010), pp. 181–240.

Fig. 10. (Color online) Deviation of radiance temperatures at
10.6 μm computed using the USD reflection model from those com-
puted using 3C BRDFmodel. Difference in radiance temperatures
is plotted as a function of the viewing beam radius rb of normal
viewing conditions.

Fig. 11. (Color online) Deviation of radiance temperatures at
10.6 μm computed using the USD reflection model from those com-
puted using 3C BRDFmodel. Difference in radiance temperatures
is plotted as a function of the focal point position zf of conical view-
ing conditions.

20 November 2012 / Vol. 51, No. 33 / APPLIED OPTICS 8011

http://physics.nist.gov/cuu/Constants/Preprints/lsa2010.pdf
http://physics.nist.gov/cuu/Constants/Preprints/lsa2010.pdf
http://physics.nist.gov/cuu/Constants/Preprints/lsa2010.pdf
http://physics.nist.gov/cuu/Constants/Preprints/lsa2010.pdf


7. R. P. Heinisch, E. M. Sparrow, and N. Shamsundar, “Radiant
emission from baffled conical cavities,” J. Opt. Soc. Am. 63,
152–158 (1973).

8. A.Ono, “Calculationof thedirectionalemissivitiesof cavitiesby
the Monte Carlo method,” J. Opt. Soc. Am. 70, 547–554 (1980).

9. V. I. Sapritsky and A. V. Prokhorov, “Spectral effective
emissivities of nonisothermal cavities calculated by theMonte
Carlo method,” Appl. Opt. 34, 5645–5652 (1995).

10. J. Ishii, M. Kobayashi, and F. Sakuma, “Effective emissivities
of black-body cavities with grooved cylinders,” Metrologia 35,
175–180 (1998).

11. Y. Té, P. Jeseck, C. Camy-Peyret, S. Payan, S. Briaudeau, and
M. Fanjeaux, “High emissivity blackbody for radiometric cali-
bration near ambient temperature,” Metrologia 40, 24–30
(2003).

12. M. J. Ballico, “Modelling of the effective emissivity of a
graphite tube black body,” Metrologia 32, 259–265 (1995).

13. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I.W. Ginsberg, and
T. Limperis, “Geometrical considerations and nomenclature
for reflectance,” NBS Monograph 160 (U. S. Department of
Commerce, National Bureau of Standards, 1977).

14. A. Prokhorov, “Effective emissivities of isothermal blackbody
cavities calculated by the Monte Carlo method using the
three-component BRDF Model,” Appl. Opt. 51, 2322–2332
(2012).

15. H. J. Patrick, L.M. Hanssen, J. Zeng, and T. A. Germer, “BRDF
measurements of graphite used in high-temperature fixed
point blackbody radiators: a multi-angle study at 405 nm
and 658 nm,” Metrologia 49, S81–S92 (2012).

16. M. Kurt and D. Edwards, “A survey of BRDF models for com-
puter graphics,” Comput. Graph. 43, 4 (2009).

17. S. Liang, Quantitative Remote Sensing of Land Surfaces
(Wiley, 2004).

18. D. Geisler-Moroder and A. Dür, “A new ward BRDF model
with bounded albedo,” Comput. Graph. Forum 29,
1391–1398 (2010).

19. C. Schlick, “An inexpensive BRDF model for physically-based
rendering,” Comput. Graph. Forum 13, 233–246 (1994).

20. M. Clerc, Particle Swarm Optimization (ISTE, 2006).
21. R. P. Brent, “An algorithm with guaranteed convergence for

finding a zero of a function,” Comput J (Switzerland) 14,
422–425 (1971).

22. J. Berntsen, T. O. Espelid, and A. Genz, “An adaptive algo-
rithm for the approximate calculation of multiple integrals,”
ACM Trans. Math. Softw. 17, 437–451 (1991).

23. M. J. Persky, “Review of black surfaces for space-borne infra-
red systems,” Rev. Sci. Instrum. 70, 2193–2217 (1999).

24. L. M. Hanssen and A. V. Prokhorov, “Stochastic modeling of
non-Lambertian surfaces for Monte Carlo computations in
optical radiometry,” Proc. SPIE 7427, 742707 (2009).

25. Measurements were performed by Leonard M. Hanssen, Dr.
(NIST, Gaithersburg, Maryland).

26. L. M. Hanssen and S. Kaplan, “Infrared diffuse reflectance
instrumentation and standards at NIST,” Anal. Chim. Acta
380, 289–302 (1999).

27. J. Zeng and L. Hanssen, “An infrared laser-based reflect-
ometer for low reflectance measurements of samples and
cavity structures,” Proc. SPIE 7065, 70650F (2008).

8012 APPLIED OPTICS / Vol. 51, No. 33 / 20 November 2012




