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This paper proposes a three-component bidirectional reflectance distribution function (3C BRDF) model
consisting of diffuse, quasi-specular, and glossy components for calculation of effective emissivities of
blackbody cavities and then investigates the properties of the new reflection model. The particle swarm
optimization method is applied for fitting a 3C BRDF model to measured BRDFs. The model is incorpo-
rated into the Monte Carlo ray-tracing algorithm for isothermal cavities. Finally, the paper compares the
results obtained using the 3C model and the conventional specular-diffuse model of reflection. © 2012
Optical Society of America
OCIS codes: 120.5630, 230.6080, 290.1483.

1. Introduction

Near-isothermal-heated cavity is a source of optical
radiation whose characteristics approach those of the
perfect blackbody. Therefore, it can be computed
using the fundamental laws of physics. Blackbody
cavities are widely used as calibration sources in op-
tical radiometry, photometry, and radiation thermo-
metry [1,2]. The most important characteristic of a
blackbody cavity is its effective emissivity. In other
words, unlike a flat surface, radiation emerging from
every point of cavity’s internal surface comprises ra-
diation emitted by all other points that is reflected by
the point under consideration. High-quality blackbo-
dies have small temperature nonuniformity and
usually can be considered isothermal. An isothermal
cavity in a nonemitting environment holds thermo-
dynamic equilibrium. According to generalized
Kirchhoff ’s law [3], the effective emissivity of a cavity
with opaque isothermal walls can be expressed in
terms of its effective reflectance ρe and does not de-

pend on the cavity temperature. Spectral local direc-
tional effective emissivity of isothermal cavity can be
determined as

εe�λ; ξ;ω� � 1 − ρe�λ; ξ;ω�; (1)

where λ is the wavelength, and ξ and ω are positional
and directional vectors, respectively.

The effective emissivity of isothermal cavity de-
pends on its geometrical parameters and the regis-
tration conditions of the cavity’s radiation, as well
as the optical properties of cavity walls. The integra-
tion of the spectral local directional effective emissiv-
ity over the spectral, spatial, or angular domain gives
specific effective emissivity values (e.g., integration
over a conical solid angle leads to a conical effective
emissivity and so forth).

The effective emissivity of blackbody radiation
sources must be known with the uncertainty small
enough to conduct reliable calibration of various
types of detectors, radiometers, radiation thermo-
meters, and other measuring devices. Measuring the
effective emissivity is difficult, requires special
measurement equipment, and frequently can be
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performed only in thermal and geometrical condi-
tions, which do not adequately reproduce real oper-
ating conditions of blackbody radiators. Therefore,
calculations of radiation characteristics for black-
body cavities are necessary at the design stage as
well as at the stage of metrological characterization.

Various methods for calculating the effective emis-
sivity have been developed since the second half of
the 20th century (their synopses can be found in
[4,5]). Most of them have a limited area of applicabil-
ity or use overly simplified models to account for
optical properties of cavity walls. The Monte Carlo
ray-tracing method is the most flexible and has been
applied to effective emissivity calculations for cav-
ities of various shapes [5–7]. This method uses ray
optics, so phenomena such as polarization and dif-
fraction are out of the scope of this work.

2. Optical Properties of Radiating Cavity Materials

The choice of material or coating of radiating black-
body cavities is determined by many parameters:
operational temperature of a blackbody, required ef-
fective emissivity, cavity shape, and geometrical con-
ditions of collecting the radiation emitted by a cavity.
Blackbodies operating at low temperatures have ra-
diating cavities internally coated with various black
paints like those used for thermal detector of optical
radiation [8–11]. High-temperature blackbodies
usually are made of graphite or other refractory
materials [12]. Blackbodies of intermediate tempera-
tures frequently have an oxidized metallic surface.
Spectral range, in which the material should be
employed, depends on the blackbody operating
temperature.

Unfortunately, the optical properties of materials
and coatings used for radiating surfaces of black-
bodies have been insufficiently studied. Their optical
constants (complex refractive indices) very often are
unknown. Moreover, the optical properties of such
materials are determined by not only the optical con-
stants but also the condition of the surface (rough-
ness, granularity and treatment), Because of the
presence ofmanyuncontrolledparameters in thepub-
lished data for the sample under consideration, char-
acterization of each particular sample is necessary.

Effective emissivities depend to a great extent
upon the angular distribution of the radiation
reflected by the internal surface of the cavity. This
distribution is the measurable optical characteristic
of the material and can be described by the bidirec-
tional reflectance distribution function (BRDF) intro-
duced by Nicodemus et al. [13]. In the spherical
coordinate system in Fig. 1, BRDF, f r�sr−1�, is defined
as

f r�λ; θi;ϕi; θv;ϕv� �
dLλ;v�λ; θi;ϕi; θv;ϕv�

dEλ;i�λ; θi;ϕi�
; (2)

where θ and ϕ are the polar and azimuthal angles,
respectively, Lλ is the spectral radiance, and Eλ is
the spectral irradiance. Subscripts i and v refer to
incidence and viewing directions, respectively.

It is supposed that fluorescence and translucency
are absent. Without the loss of generality, here and
hereinafter, we will consider the case of monochro-
matic radiation and omit dependence on the wave-
length as well as the adjective “spectral.” The
direct use of BRDF measurements for calculations of
effective emissivities is problematic due to incomple-
teness of experimental data: most BRDF measure-
ments are performed only in the plane of incidence
(so-called in-plane BRDF) and for several incidence
angles only. Thus, it usually is necessary to introduce
BRDF models in the form of analytical functions. A
number of such models were developed for computer
graphics, digital image synthesis, and remote sen-
sing during the past two decades [14–22].) Among
these models, there are physically based (i.e., de-
scribing real physical phenomena such as a reflection
of optical radiation from randomly rough surfaces or
volumetric scattering in translucent media) as well
as empirical or semi-empirical models, which is only
mathematical formulas with a set of tunable param-
eters. Many of these models cannot be used in precise
radiometric calculations due to their limitations.
Some are only oriented to plausible visual perception
while others poorly reproduce reflective behavior of
real materials or reproduce it satisfactorily for not
all combinations of incidence and viewing angles.

In the radiative heat transfer analysis, the most
widespread (and straightforward) reflection model
is the specular-diffuse model [23]. It calculates the
angular distribution of reflected radiation as the
sum of a perfect diffuse (Lambertian) and a perfect
specular component. It is assumed that both compo-
nents do not depend on incidence angle. Like Ono [6],
we will call this model uniform specular-diffuse
(USD) to distinguish it from its modification where
a specular component depends on an incidence angle
[7]. A USD model contains only two parameters: the
directional–hemispherical reflectance (DHR) ρ, and
the diffusity D � ρd∕ρ, where ρd is the diffuse re-
flectance. The USD reflection model is the most pop-
ular in the Monte Carlo ray-tracing algorithms due
to the simplicity of its implementation and minimal
number of tuning parameters. However, the USD
model has two drawbacks: there is no objective
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Fig. 1. (Color online) Schematic for the BRDF definition.
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criterion for subdivision of reflectance onto diffuse
and specular components, and fitting to the mea-
sured BRDF is impossible because the BRDFof a per-
fectly specular component is the Dirac δ-function
that has infinite value if θv � θi and ϕv � ϕi � π.
Real-world specularly reflecting materials of black-
body cavities have specular peaks of small, but finite,
widths and large, but finite, BRDF maxima. We will
call such materials quasi-specular.

Analysis of BRDF measurements at ambient
temperatures [8–11,24,25] for some black coatings
and graphite samples [26] shows the USD model
might be too crude an approximation for these data
but can be represented as the sum of three compo-
nents: near-Lambertian (diffuse), almost specular
(quasi-specular), and glossy (having wide forward-
scattering lobe). To our knowledge, BRDF measure-
ments for graphite at temperatures about or above
1000 K, that is at operational temperatures of
graphite blackbodies, have never been performed.

Here, the names of components are not concerned
with physical phenomena they determine but refer to
their shapes only. For example, diffuse component
might be caused bymultiple scattering on the surface
roughnesses, or by volumetric scattering inside a
translucent coating and so forth. The challenge is
to develop a simple BRDF model that satisfies the
following requirements.

(1) The BRDF model must obey the reciprocity
principle:

f r�θi;ϕi; θv;ϕv� � f r�θv;ϕv; θi;ϕi�: (3)

(2) The BRDFmodel must obey the energy conser-
vation law, i.e., DHR

ρ�θi��
Z

2π

ϕv�0

Z π∕2

θv�0
f r�θi;ϕi;θv;ϕv�sinθvcosθvdθvdϕv (4)

must be less than 1 for any incidence angle θi; DHR
dependence on θi computed using Eq. (4) must repro-
duce DHR behavior of a real material.

(3) The BRDF model must have enough tuning
parameters to be fitted to the measured in-plane
BRDF for all incidence angles for which it was
measured.

(4) The BRDF model must be physically based to
correctly predict BRDF values outside the range of
measured incidence and viewing angles.

(5) It is desirable that the BRDFmodel will be sui-
table for importance sampling [27] (i.e., for generat-
ing randomly reflected rays with the probability
density function coordinated with the BRDF values).
Importance sampling substantially accelerates con-
vergence of Monte Carlo computations.

The objectives of this work are fivefold:

1. to construct the BRDF model which satisfies
the above-mentioned requirements,

2. to investigate the model’s features,

3. to develop the algorithm for fitting modeled
BRDF to measured values,

4. to incorporate this model into the ray-tracing
algorithm for effective emissivity calculation, and

5. to compare the results obtained using this
model with those for the USD model of reflection.

The principal aim is to develop a model that mi-
mics BRDF behavior of materials of blackbody cav-
ities better than the specular-diffuse model does.

Since the different physical mechanisms may be
responsible for reflection from various materials of
blackbody cavities or even be superimposed, it is
hardly possible to employ one certain existing BRDF
model to describe the reflection characteristics of all
materials considered. We used a phenomenological
approach rather than the first principle-based theo-
retical approach. Analysis of available experimental
data [8–11,24–26] shows that one can represent
BRDF, f r, by the linear combination of diffuse, f r;d,
quasi-specular, f r;qs, and glossy, f r;g, components:

f r � kdf r;d � kqsf r;qs � kgf r;g; (5)

where kd, kqs, and kg are nonnegative and

kd � kqs � kg � 1. (6)

Diffuse component corresponds to reflected radia-
tion more or less uniformly scattered within the
hemispherical solid angle. Lambertian reflection
(also known as ideal diffuse or perfectly diffuse re-
flection) is the extreme case of diffuse reflection when
f r;d � const. A quasi-specular component has a very
narrow but finite width peak in the direction of per-
fectly specular (mirrorlike) reflection. A glossy com-
ponent is similar to the quasi-specular component
but is wider so that it forms a specular lobe rather
than a peak. It is obvious that f r will obey the reci-
procity principle and energy conservation law if this
takes place for f r;d, f r;qs, and f r;g. Analysis of numer-
ous particular BRDFmodels shows that the majority
of them do not comply with five requirements ex-
pounded above. We considered only isotropic BRDF
models depending on ϕ � jϕi − ϕvj instead of ϕi and
ϕv. For anisotropic BRDFmodels, only their isotropic
versions were considered.

It was found that the model proposed by Geisler-
Moroder and Dür [28] can be employed for both
quasi-specular and glossy components. The
Rahman–Pinty–Verstraete (RPV) reflection model
and its modifications [18] show good fitting results
for various diffuse samples. However, these models
are nonnormalized (i.e., require additional efforts
to preserve energy conservation). Since Lambertian
reflectance can be considered as a special case of this
family of models, we decided that the Lambertian
BRDFwill be a reasonable trade-off for a diffuse com-
ponent in our model.

2324 APPLIED OPTICS / Vol. 51, No. 13 / 1 May 2012



3. Three-Component Bidirectional Reflectance
Distribution Function Model

Using this approach, we introduced the three-
component bidirectional reflectance distribution
function (3C BRDF) model as an improvement of
the USD model. The BRDF of the diffuse (Lamber-
tian) component is the constant:

f r;d � Rd

π ; (7)

where Rd is the diffuse reflectance (DHR) of the
diffuse component.

For quasi-specular and glossy components, the
model proposed by Geisler-Moroder and Dür [28]
for rough surfaces has been chosen in its isotropic
version:

f r�θi;θv;ϕ� �
R�θh�
πσ exp

�
−

�
tan θh

σ

�
2
�

×
2�1� cos θi cos θv − sin θi sin θv cos ϕ�

�cos θi cos θv�4
;

(8)

where σ is the roughness parameter and θh is the
halfway angle (Fig. 1).

This BRDFmodel is based on the microfacet model
of reflection [29]. The last multiplier allows us to
avoid infinite BRDF values at θi � θv � π∕2 and,
at the same time, plays the role of normalization fac-
tor. Specular reflectance, R, of microfacet depends on
the angle θh of the incidence onto the microfacet. This
angle, called the halfway angle, is formed by the sur-
face normal and the halfway vector h � ωv−ωi

2‖ωv−ωi‖

(Fig. 1). It is assumed that microfacet normals have
Gaussian distribution with zero mean value and
standard deviation σ. The greater the σ the greater
the surface roughness and, correspondingly, the
wider the BRDF lobe. Elementary physical reason-
ing suggests that DHR of a microfacet model must
equal 1 for all incidence angles if R�θh�≡ 1. DHRs,
of all microfacet models that neglect multiple
reflections among microfacets, deviate from 1 for
such a case; the greater roughness, the greater this
deviation.

The last term in Eq. (8) is constructed in such a
way that the deviation of DHR from 1 at R�θh�≡ 1
is minimized (Fig. 2). Deviations become significant
only for large σ and large θi. Since the reflectance of
materials of blackbody cavities is essentially low, de-
viations of DHR computed by integration of BRDF in
Eq. (8) from the actual DHR values will be substan-
tially less.

The original model [28]) uses Schlick’s approxima-
tion [30] of Fresnel’s reflection law for unpolarized
light:

R�θh� � Rqs � �1 − Rqs��1 − cos θh�5; (9)

where Rqs is the specular reflectance of a microfacet
at the normal incidence.

We also preferred Schlick’s approximation over
Fresnel’s equation for the following reasons.

1. In the fitting problem, it is important to know a
good initial value of a fitted parameter or at least the
narrowest range of its acceptability. These data are
unavailable a priori for the refractive index n and
the extinction coefficient k while for the reflectance
at the normal incidence, 0 ≤ Rqs ≤ 1.

2. Fresnel’s equation has more complicated form
and comprises n2 and k2. These factors result in an
increase of number of objective function minima and
require introducing additional criteria to select the
global minimum.

3. Although Eq. (8) is based on the microfacet
model for rough surfaces, we found that one can
apply this equation for modeling of reflection with a
different scattering nature (e.g., subsurface or volu-
metric scattering for quasi-specular black paints).
In such cases, parametersnandk can takeuncommon
values, lose their physical meaning, and should be
considered as the fitting parameters only. Parameter
Rqs remains within interval �0; 1� and maintains
its physical meaning. Indeed, in such a case, σ in
Eq. (8) should be considered only as a parameter
determining the width of the BRDF lobe.

4. The Schlick formula not only approximates
Fresnel’s law accurately enough for dielectrics but
also works several times faster.

For nondielectrics, Eq. (9) gives deviations from
Fresnelian reflectance at large θh. However, large
θh values usually correspond to very rough surfaces
for which the effect of multiple reflections among mi-
crofacets overrides Schlick’s approximation errors.
The numerical experiments we performed did not re-
veal significant differences between the employment
of Fresnel’s law and Schlick’s approximation for the
tasks considered in this paper. The only drawback
with Schlick’s approximation, which hampers the
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use of thr Geisler-Moroder and Dür model in the fit-
ting problem, is nonzero reflectance that Eq. (9) gives
for Rqs � 0 and θi > 0. We were forced to add the
condition R�θi�≡ 0 if Rqs � 0. From the formal point
of view, this condition leads to mathematical dis-
continuity of R�θi�, but computational experiments
did not detect any erroneous or artifactual fitting
results.

We used Eq. (8) for both quasi-specular and glossy
components and allowed that 0.0001 ≤ σqs ≤ 0.01 for
the quasi-specular component and 0.01 < σg ≤ 0.5 for
the glossy BRDF component. In-plane BRDFs
plotted in the Cartesian coordinate system according
to Eqs. (8) and (9) for Rg � 0.1, σg � 0:1, and six
values of θi (0°, 15°, 30°, 45°, 60°, and 75°) are shown
in Fig. 3. The negative values of viewing angles
θv correspond to the backscattering. The three-
dimensional plots of glossy BRDFs expressed in re-
lative units for Rg � 0.1 and σg � 0.05, 0.1 and 0.2
are presented in the spherical coordinate system
in Fig. 4 for 45° of incidence.

DHR of the 3C BRDF model can be represented in
the form

ρ�θi� � ρd � ρqs�θi� � ρg�θi�; (10)

where every summand is the DHR of the appropriate
component:

ρd � kd

Z
2π

ϕv�0

Z π∕2

θv�0
f r;d�Rd; θi;ϕi; θv;ϕv�

× sin θv cos θvdθvdϕv

� kdRd; (11)

ρqs�θi� � kqs

Z
2π

ϕv�0

Z π∕2

θv�0
f r;qs�Rqs; σqs; θi;ϕi; θv;ϕv�

× sin θv cos θvdθvdϕv;

(12)
and

ρg�θi� � kg

Z
2π

ϕv�0

Z π∕2

θv�0
f r;g�Rg; σg; θi;ϕi; θv;ϕv�

× sin θv cos θvdθvdϕv: (13)

The double integrals in Eqs. (12) and (13)
were computed numerically using an adaptive
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quadratures algorithm [31]. Our results agree with
those obtained by the Monte Carlo integration [28].
For very small σqs, dependences ρqs�θi� practically
coincide with appropriate Schlick’s curves.

4. Fitting the 3C BRDF Model to BRDF Measurement
Data

A. Goodness-of-Fit Criteria

The 3C model of reflection has eight parameters: kd,
Rd, ks, Rs, σs, kg, Rg, and σg. Three of them are inter-
related as shown in Eq. (6). Besides, the following
conditions must be fulfilled:

0 ≤ kd;Rd; Kqs; Rqs; kg; Rg ≤ 1; (14)

0.0001 ≤ σqs ≤ 0.001; (15)

0.001 < σg ≤ 0.5. (16)

Mathematically, we deal with the problem of con-
strained optimization and have to find eight values of
the 3C model parameters, which minimize distances
between computed and measured BRDFs according
to some goodness-of-fit criterion. Multiple numerical
experiments did not help to isolate a unified criterion
for all variety of BRDF shapes. For smooth BRDFs
with the moderate dynamic range, the L2 metric
ensures good fitting results. The objective function
F (Kd, Rd, kqs, Rqs, σqs, kg, Rg, σg) for the metric L2
equals

F �
Xni

k�1

Xnv;k

j�1

�f r;m�θi;k; θv;jk� − f r�θi;k; θv;jk��2; (17)

where f r and f r;m are computed and measured in-
plane BRDF, ni is the number of incidence angles,
nv;k is the number of viewing angles in the BRDF
measured at kth incidence angle θi;k, and θv;jk is
the jth viewing angle for the BRDF measured for θi;k.

It was found that for very nonuniform BRDFs with
a large dynamic range (for instance, for BRDF with a
narrow quasi-specular peak), the C metric for rela-
tive deviations is more suitable:

F�

8><
>:
0; if f r;m�θi;k;θv;jk�� f r�θi;k;θv;jk��0

max
k�1;…;ni

max
j�1;…;nv;k

�
jf r;m�θi;k;θv;jk�−f r�θi;k;θv;jk�j
f r;m�θi;k;θv;jk��f r�θi;k;θv;jk�

�
otherwise.

(18)

For some intermediate cases, the best fit was
achieved using the L1 metric:

F �
Xni

k�1

Xnv;k

j�1

jf r;m�θi;k; θv;jk� − f r�θi;k; θv;jk�j: (19)

B. Optimization Algorithm

Numerical investigation has shown that the objec-
tive functions defined by Eqs. (17)–(19) havemultiple
minima but only one of them is the deepest. There-
fore, we have to deal with multimodal objective func-
tions and, correspondingly, with the global
optimization problem. For such problems, the solu-
tion usually depends on a starting point. It was as-
sumed that there is no a priori information, which
would allow us to select a “good” starting point
needed to detect the global minimum among several
local minima. The particle swarm optimization
(PSO) method [32] was chosen to solve this problem
for two main reasons. First, PSO only requires
knowledge of lower and upper allowed values for
each variable instead of its “good” zero approxima-
tions. Second, PSO is applicable (at least, in princi-
ple) to the global optimization problem.

PSO is a stochastic, derivative-free, iterative opti-
mization method that imitates random movement of
“particles” in the multidimensional search space.
The movements of the particles are determined by
their individual best-known positions as well as the
best-known position for a swarm as a whole.
Although PSO does not guarantee locating the global
minimum, the probability of its detection is high at
the optimal tuning of the algorithm. We implemen-
ted the algorithm described in [33] conjugated with
the normalization of parameters kd, ks and kg for
calculations of f r after each iteration. A multiple
restarts strategy was used to avoid stagnation and
convergence to wrong solutions (local minima).

C. Practical Example

To demonstrate the practical application of the
approach described above, we used BRDF measure-
ments at the wavelength of 10.6 μm for the Chem-
glaze Z302 black coating reported in [24,25].
Fitting results, obtained using the objective function
in Eq. (18), are presented in Fig. 5. The following val-
ues of 3C model were found: kd � 0.400, Rd � 0.003,
kqs � 0.408, Rqs � 0.091, σqs � 0.010, kg � 0.191,
Rg � 0.047, and σg � 0.072. Figure 6 shows the com-
puted DHR ρ�θi� together with ρd, ρqs�θi�, and ρg�θi�
for this model.

5. Monte Carlo Modeling Algorithm

The backward ray tracing [34] based on the recipro-
city principle was implemented in the Monte Carlo
algorithm for the effective emissivities calculations.
Every ray starts outside the cavity; its starting posi-
tion and direction are determined by the viewing con-
ditions. For example, to compute the average normal
effective emissivity that corresponds to the case of
collecting cavity radiation using a very long focal-
length optical system, rays have to be directed par-
allel to the cavity axis from points arbitrary distant
from the cavity aperture and uniformly distributed
across the circular section of the radiation beam.

For the case of a convergent or divergent ray beam
emerging from the cavity aperture, conical effective
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emissivity that imitates viewing conditions with the
objective lens or other imaging optical system, can be
modeled by generating rays uniformly distributed
within the conical solid angle and starting from
the focal point (cone apex). If the starting point
and the directional vector are known, one must solve
the equation for a cavity surface together with para-
metric equations for a straight line. If the cavity con-
sists of many surfaces, the line-surface intersection
points have to be found for each surface. The true
solution corresponds to the point that lies on some
surface within its bounds and has the minimal dis-
tance from the starting point. We implemented this
algorithm for cavities formed by the revolving of
the non-self-intersecting polygonal line around the
cavity axis.

When a ray hits the cavity wall at an angle of
incidence θi, the type of reflection is chosen using
a random number ur distributed uniformly from 0
to 1. If ur ≤ ρd�θi�, the diffuse reflection is chosen.
If ur ≤ ρd�θi� � ρqs�θi�, the reflection is quasi-
specular; otherwise, the reflection is glossy. The sta-
tistical weight w defined by optical properties of a
surface and a sampling algorithm for directions of
reflection should be assigned to each reflected ray.

Importance sampling for diffuse component can be
done using a well-known method [35]:

sin2 θv � uθ; (20)

ϕv � 2πuϕ; (21)

where uθ and uϕ are two random numbers from a uni-
formly distributed set between 0 and 1, θv and ϕv are
the polar and azimuthal angles of a reflected ray in
the local spherical coordinate system with the origin
at the point of reflection and z axis coincident with
the surface normal.

We used an alternative method that produces Car-
tesian coordinates of the unit vector directed along
the reflected ray. The pair of uniformly distributed
random numbers ux and uy are generated and ac-
cepted if u2

x � u2
y < 1, otherwise the new pair of ux

and uy are generated. Cartesian coordinates of the
unit reflection vector ωv in the local coordinate sys-
tem are computed as

8><
>:
ωx � 2ux − 1
ωy � 2uy − 1

ωz � �
�������������������������
1 − ω2

x − ω2
y

q . �22�

The statistical weight w � Rd is assigned to the
diffusely reflected ray.

The sampling procedure described in [28] was ap-
plied to quasi-specular and glossy components. First,
spherical coordinates of the halfway vector h (Fig. 1)
are computed using random numbers uθ and uϕ:

θh � tan−1�−σ ln uθ� (23)

and

ϕh � 2πuϕ: (24)

Second, spherical coordinates have to be trans-
formed to Cartesian coordinates:

8<
:
hx � sin θh cos ϕh

hy � sin θh sin ϕh

hz � cos θh
. �25�

When coordinates of the halfway vector h are
found, one can compute coordinates of the viewing
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(symbols).
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vector ωv specularly reflected from the microfacet
with the normal h for the given incidence vector ωi:

(ωvx � ωix − 2�ωi · h�hx

ωvy � ωiy − 2�ωi · h�hy

ωvz � ωiz − 2�ωi · h�hz

. �26�

According to the sampling procedure proposed in
[31], the statistical weight

w � 2R�θh�
1 − ωiz∕ωvz

�27�

is assigned to the reflected ray.
Each ray is traced until it escapes the cavity

through the aperture. Ray weights decrease after
each reflection; therefore, one can stop tracing of a
ray if its weight becomes less than the required re-
lative uncertainty γ of the effective emissivity calcu-
lation. To estimate the effective emissivity, a large
number of rays should be traced; the estimator for
effective emissivity is as follows:

εe � 1 −
1
n

Xn
k�1

Ymk

j�1

wjk; (28)

where wjk is the statistical weight of kth ray after jth
reflection and mk is the number of reflections in the
trajectory of kth ray.

The algorithm described above can be modified for
modeling nonisothermal cavities; however, this lies
outside the scope of the present work.

6. Results of Numerical Experiments

A. Objectives of Numerical Experiments

The numerical experiments were aimed at investi-
gating the specific effects of the angular dependence
and finite width of BRDF profiles for quasi-specular
and glossy components and identifying the situations
when the 3C model of reflection lead to results that
cannot be reproduced with the USD model for any
values of ρ andD. For all numerical examples, cylind-
rical and cylindro-conical cavities were chosen
(Fig. 7). Their geometrical parameters are: rc � 1,
ra � 0.5, l � 10, β � 30°.

In all calculations presented below, 106 rays were
traced with γ � 10−6.

B. Cavity with Quasi-specular Walls

To investigate the difference between quasi-specular
and perfectly specular reflection (an infinitely thin
reflected ray in which energy does not depend on in-
cidence angle), we compute the average normal effec-
tive emissivity as a function the viewing beam radius
r for the cylindro-conical cavity shown in Fig. 7a. Ele-
mentary geometric consideration shows that, in the
case of perfectly specular walls, a ray entering the
aperture parallel to the cavity axis undergoes three
successive reflections toward the apex of 30°-cone,

then reverses, and, after three reflections toward
the aperture, escapes the cavity in the direction par-
allel to the cavity axis. Thus, if the specular reflec-
tance of perfectly specular cavity walls equals 0.2,
the local normal effective emissivity should be equal
to 1 − �0.2�6 � 0:999936.

By assuming that the cavity walls are quasi-spec-
ular, we performed Monte Carlo modeling for Rqs �
0.2 and σqs � 0.002, 0.005, 0.007 and 0.01. Computed
dependences are presented in Fig. 8. All effective
emissivity values are less than 0.999936. This is ex-
plained by the following fact: effective emissivity is
determined primarily by the radiance of the own
thermal radiation of the directly viewable cavity wall
area. In terms of the backward ray tracing, it means
that the contribution of the first reflection is domi-
nant. For the conical bottom having apex angle of
30°, a ray sent into the cavity parallel to its axis
forms the incidence angle of 75° with the cavity
bottom normal. According to Eq. (9), if Rqs � 0.2,
R�75°� ≈ 0.38. For small σqs, ρqs�75°� ≈ R�75°�; ρqs�75°�
decreases if σqs increases. If divergence of the re-
flected beam is negligible, incidence angles for the
next reflections (except for the last, 6th, reflection)
will be smaller. For the appreciably divergent re-
flected beam, we will observe a complicated distribu-
tion of rays by incidence angles after several
successive reflections. This distribution determines
the average normal effective emissivity values for
small values of r.

Monotonic growth of the effective emissivities with
r increasing is attributed to the divergence of the re-
flected beam. If r is increased (for a fixed σqs), a frac-
tion of rays that hit cavity diaphragm and continue to
reflect inside the cavity grows. When σqs grows, the
quasi-specular lobe becomes wider, the fraction of
rays hitting cavity walls instead of escaping through
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Fig. 7. (Color online) Schematics of the cavities and viewing
conditions used for numerical experiments.
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the aperture also increases, and the average normal
effective emissivity begins to rise at the smaller
values of r.

C. Cavity with Glossy Walls

When studying glossy reflection, the conical effective
emissivities of a cylindrical cavity were computed
(Fig. 7b). Cylinder is the classical geometric shape
for cavities with Lambertian walls. However, there
is no reason to manufacture cylindrical cavity from
a material with significant specular reflection be-
cause the effective emissivity along the axis of such
a cavity won’t be high enough. It was supposed that
cavity walls are glossy and the apex of ray cone co-
incides with the cavity aperture center.

Figure 9 shows the conical effective emissivities
computed against the viewing cone angle A for Rg �
0.1 and σg � 0.2, 0.3, 0.4, and 0.5. For comparison,
the dependence obtained for the same cavity with
purely diffuse reflectance ρ � 0.1 also is shown.
The curve for diffuse case is higher than those for
glossy cases with any reasonable σg so the effective
emissivities of cylindrical cavities computed in dif-
fuse approximation may be overestimated in
some cases.

D. Comparison of 3C and USD Models

To determine whether the USDmodel at some values
of ρ andD reproduces effective emissivities computed
using the 3C model, we computed conical effective
emissivities for cylindro-conical cavity shown in
Fig. 7c. We synthesized 3C model with the follow-
ing parameters: kd � 0.2, kqs � 0.3, kg � 0.5,

Rd � Rqs � Rg � 0.2, σqs � 0.003, σg � 0.03. BRDFs
of this model are presented in Fig. 10; computed
DHRs for the entire model and its components are
shown in Fig. 11. This model was applied to the
cavity walls.

We also computed conical effective emissivities for
the USD models with ρ � 0.1 and ρ � 0.37 (this cor-
responds to the DHR of 3C model at the incidence
angle of 75°) and three diffusity values: D � 0, 0.5,
and 1. We present the results in Fig. 12, but won’t
discuss the behavior of each curve in this graph.
One thing is certain: the USD model does not repro-
duce results obtained using the 3C model. This con-
clusion is not all-embracing. We also encountered
many cases where the USD model leads to results
that are very close to those obtained with the 3C
model. However, one principal disadvantage of
the USD model remains in force for all cases: it is
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impossible to unambiguously subdivide reflectance
onto diffuse and specular component. Therefore, it
is impossible to choose the diffusity value that unam-
biguously results in correct effective emissivities.

7. Conclusion

The 3C BRDF model was proposed and studied in
this work. A general outline for a suggested approach

to fitting 3C model to measured BRDFs was given.
The 3C BRDF model was incorporated into Monte
Carlo ray-tracing algorithm for calculation of the
effective emissivities of blackbody cavities. We inves-
tigated influence of the 3C model parameters on ef-
fective emissivities of blackbody cavities with simple
geometric shapes and compared the results with
those obtained using the conventional USD model
of reflection. We found that there are cases when
the USDmodel of reflection cannot reproduce results
obtained using 3C BRDF model.

The USDmodel remains highly valuable in assess-
ment of effective emissivities of blackbody cavities
especially at the design stage, due to the minimal
number of model’s parameters and the simplicity
of the interpretation of the results obtained. How-
ever, in some cases, the USD model might be too
crude for precise characterization of blackbody cali-
bration sources. This, in turn, may affect the mea-
surement precision of such quantities as spectral
radiance and radiance temperature.

In the future works, we plan to extend our analysis
to isothermal cavities and introduce normalized
modified version of the RPV model instead of the
Lambertian component.
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