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The Monte Carlo method has been applied to numerical modeling of an integrating sphere designed for
hemispherical-directional reflectance factor measurements. It is shown that a conventional algorithm
of backward ray tracing used for estimation of characteristics of the radiation field at a given point has
slow convergence for small source-to-sphere-diameter ratios. A newly developed algorithm that sub-
stantially improves the convergence by calculation of direct source-induced irradiation for every point of
diffuse reflection of rays traced is described. The method developed is applied to an integrating sphere
reflectometer for the visible and infrared spectral ranges. Parametric studies of hemispherical radiance
distributions for radiation incident onto the sample center were performed. The deviations of measured
sample reflectance from the actual reflectance as a result of various factors were computed. The
accuracy of the results, adequacy of the reflectance model, and other important aspects of the algorithm
implementation are discussed. © 2003 Optical Society of America
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1. Introduction

The integrating sphere �IS�—a hollow sphere with
diffusely scattering �i.e., close to Lambert’s law�,
high-reflectance internal walls—is one of the sim-
plest and most widely used devices for optical radia-
tion measurements. Because of its ability to
redistribute nonuniform incident irradiation uni-
formly over its internal surfaces through multiple
reflections, the IS finds applications in reflectance,
transmittance, and luminous flux measurements and
is used as a uniform radiance source. For the design
of measurement instrumentation that uses ISs as
well as for determining measurement uncertainties it
is necessary to evaluate, compute, and predict the
most important characteristics of the spheres. Irre-
spective of an IS’s designated purpose, its principal
radiometric characteristics are the spatial distribu-
tion of spectral irradiance over the internal surface of
the IS and the angular distributions of spectral radi-
ance incident on a given point or reflected from it.
The radiation flux falling onto a detector, which is the
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end point of any computation of ISs, can be found by
integration of these distributions over appropriate
spatial, angular, and spectral variables. Approxi-
mate IS theory is based on the summation of an
infinite series of irradiances for consecutive diffuse
reflections1–3 and is applicable only to calculation of
the average irradiation of IS walls. The exact solu-
tion for an IS with perfectly diffuse internal surfaces
can be obtained numerically from Fredholm’s inte-
gral equations of second kind.4–6 This method al-
lows such effects as vignetting of radiation by
internal baffles and angular and spatial nonunifor-
mity of source radiance to be accounted for. The
zonal method,7,8 based on the equation of radiant
energy balance for finite areas that form the IS, is the
discrete analog of the integral equations method.
The common drawback of the above-mentioned meth-
ods is that their use is limited to ISs that have Lam-
bertian surfaces. The reflection properties of real
materials and coatings always differ from the Lam-
bertian ideal. This difference can become consider-
able in the infrared spectral range, where the
specular component of reflection can be significant.
Therefore the use of the Lambertian model of reflec-
tion may lead to unpredictable errors. To date, the
ray-tracing-based Monte Carlo method is the only
technique that accommodates the direct simulation
of non-Lambertian surfaces. The foundation of this
technique is the probabilistic treatment of radiation–
matter interactions. This approach permits con-
struction of a stochastic model of the system under
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consideration and an evaluation of its parameters
with a large number of ray-tracing implementations.
The number of realizations of a stochastic process
determines the accuracy of the solutions. Therefore,
in the past several decades, along with the explosive
growth of computer performance, the Monte Carlo
method has seen increasing application to the radio-
metric problems of optical radiation transfer includ-
ing numerical modeling of ISs.9–12

2. Statement of the Problem

The integrating sphere reflectometer that is being
modeled will be employed to measure diffuse reflec-
tance. In particular, it will measure the spectral
hemispherical-conical reflectance factor �or, after ap-
plication of the reciprocity theorem, the spectral
conical-hemispherical reflectance� over a given wave-
length and temperature range. The measurements
are performed by the method of comparison with a
reference �diffuse reflectance standard�. The
hemispherical-conical geometry �we use the nomen-
clature and definitions of reflection characteristics
proposed by Nicodemus et al. in Ref. 13� implies uni-
form distribution of incident radiation over a hemi-
spherical solid angle and collection of reflected
radiation within a conical solid angle. The actual
distribution of incident radiance is always nonuni-
form, which can result in an appropriate systematic
uncertainty.

The research reported here has two main objec-
tives: �i� to develop an algorithm and computer code
to facilitate calculation of the hemispherical distribu-
tion of radiance for radiation falling onto the sample
center as well as of the ratio of radiant fluxes reflected
by the sample and the reference and �ii� to perform a
parametric study of the quantities mentioned above
against angular distribution of source radiant inten-
sity, spectral reflectance, and its specular component
for the sample and IS walls. The relative uncer-
tainty of computations must be less than 0.1%. The
computation model and the original algorithm of the
Monte Carlo method developed to achieve these goals
are described in Section 3.

A schematic cross section of the reflectometer is
depicted in Fig. 1, where the y axis is directed behind
the image plane. The IS �1� is coated with a high-
reflectance diffuser over most of its surface. In the
upper part of the IS there is an elliptical opening �2�,
intended for radiation output to a detector. A radi-
ation source �3�, located in the lower part of the IS
directly opposite opening 2, is circular and nearly
Lambertian �e.g., opal glass with fiber coupling to a
halogen lamp or laser�. A flat circular sample �4�,
encased in an annular holder �5� and connected with
an outside thermostat �6�, is arranged symmetrically
to the reference �7� �diffuse reflectance standard�, to-
gether with its own holder �8� and thermostat �9�.

Two baffles �10� and �11�, symmetrically placed be-
tween the radiation source and the sample and the
reference, respectively, are intended to prevent their
direct irradiation by the source. A concave folding
mirror �12� that has a relative aperture of 1:7 is used

for alternate viewing of the radiation fluxes from the
reference and the sample through the elliptical open-
ing with a detector �e.g., a filter radiometer or spec-
trometer�. The axes of the ray cones shown in Fig. 1
form equal angles � with the normals to sample and
reference.

For an ideal reflectometer, sample spectral
hemispherical-conical reflectance factor R1 at tem-
perature T1 and for wavelength � in conical solid
angle � can be found from

R1��, 2�3 �, T1�

R2��, 2�3 �, T2�
�

V1

V2
, (1)

where V is the detector reading; throughout the paper
the subscripts 1 and 2 denote sample and reference,
respectively. For a small solid angle � and samples
with a smooth bidirectional reflectance distribution
function we can replace hemispherical-conical reflec-
tance factor R��, 2� 3 �, T� with hemispherical-
directional reflectance factor R��, 2�3 �, T�, where
direction � coincides with the axis of conical solid
angle �, in the notation a 3 b, a and b represent
illumination and collection geometries, respectively.
According to the reciprocity theorem, hemispherical-
directional reflectance factor R��, 2�3 �, T� is equal
to directional-hemispherical reflectance ���, �3 2�,
T�; then

�1��, �3 2�, T1� � �2��, �3 2�, T2�
V1���

V2���
. (2)

Fig. 1. Sectional view of the integrating sphere reflectometer: 1,
integrating sphere; 2, elliptical opening; 3, radiation source; 4,
sample; 5, sample holder; 6, sample thermostat; 7, reference; 8,
reference holder; 9, reference thermostat; 10, 11, baffles; 12, fold-
ing mirror.
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Application of the reciprocity principle requires ho-
mogeneous and identical hemispherical irradiation of
the sample and the reference.

3. Computational Model

The computational model of the IS under consider-
ation �see Fig. 1� is formed by an internal spherical
surface of radius r described by the equation

x2 � y2 � z2 � r2, (3)

a flat radiation source of radius rs lying in a plane
parallel to the XY plane, two flat double-sided baffles,
and symmetrically arranged holders of radii rh1,2
with sample and reference of radii r01,2. The axes of
source, sample, and reference with their respective
holders all lie in the XZ plane. The opening �exit
port� is formed by the intersection of the spherical
surface �Eq. �3�	 with the upper part �z 
 0� of the
elliptic cylinder:

� x�rx�
2 � � y�ry�

2 � 1. (4)

The boundary circumferences of source and holders
are formed by sections of a sphere by appropriate
planes. The baffles are plane segments parallel to
the YZ plane and symmetrically distant on xb from it.
The bottom boundary of each baffle is formed by its
intersection with the spherical surface. The maxi-
mum height of the baffle is hb, and its length is 2yb.

For simplification we assume that conical fields of
view of the foreoptics have vertices in sample and
reference centers and that viewed areas are infinites-
imal. All the geometrical parameters of the reflec-
tometer are listed in Table 1.

To calculate the hemispherical distribution of inci-
dent radiance, we arranged the origin of the local
spherical coordinate system in the sample center, as
shown in Fig. 2.

In this paper we deal only with spectral �monochro-
matic� quantities �radiance, irradiance, radiant flux,
reflectance, etc.�, so the subscript � is omitted. For
elements of the integrating sphere, the uniform
specular-diffuse model of reflection has been used.

According to this model, the directional-
hemispherical reflectance is a sum of perfectly diffuse
�Lambertian� and specular components, and neither
component depends on incident angle. Following
the convention of Ref. 9, we describe each surface by
the value of specularity S:

S � �s���s � �d� � �s��, (5)

where �s and �d are the specular and the diffuse
components of reflectance, respectively, and � is their
sum.

We assume that the radiation source has uniform
spatial exitance: Each point of the source is Phong’s
luminaire14 and emits with radiant intensity:

I��� �
� � 1

2�
I�0�cos� �, (6)

where � is angle between the normal to the surface
and the direction of observation �see Fig. 3�. Be-
cause of the existence of a normalization factor, the
source will have the same radiant flux for any value
of �.

We also assume that the reflective surfaces of the
reference and the source are Lambertian and that the
internal surface of the IS has the same specularity as
the baffles. We allow the surface of the radiation
source to have a nonzero reflectance. The values of
reflectance for all surfaces of the IS reflectometer are
listed in Table 2. The data for Variants 1 and 2
correspond to measurements in the infrared spectral
range with the IS coated with plasma-sprayed gold;
those for Variants 3 and 4 contain the reflectances for
a visual spectral range and an IS made from Spec-
tralon or an analogous material.

Finally, we assume geometrical �ray� optics and do
not consider diffraction effects. We assume that ei-
ther the radiation source emits unpolarized radiation
or the radiation is effectively depolarized after mul-
tiple reflections inside the IS.

Fig. 2. Local spherical coordinate system.

Table 1. Numerical Values for IS Reflectometer Geometrical
Parameters

Parameter Symbol Size Unit

Sphere radius r 127 mm
Opening largest half-axis r0x 30 mm
Opening shortest half-axis r0y 23 mm
Source radius rs 5 mm
Sample radius r1 9.5 mm
Sample holder radius rh1 17.5 mm
Reference radius r2 9.5 mm
Reference holder radius rh2 17.5 mm
Half-distance between baffles xb 15 mm
Baffle height hb 7 mm
Baffle half-length yb 17 mm
Central half-angle from sample

to reference

 16 deg

Viewing angle � 8 deg
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4. Brute Force Monte Carlo Algorithm

In forward ray tracing, one traces a ray from the
radiation source until it escapes through the exit port
after several reflections inside the IS. If the direc-
tions of reflected rays are distributed randomly in the
hemispherical solid angle, the geometrical probabil-
ity of exact coincidence of a random direction with a
given direction is equal to zero. This is why, if the
radiation source is not itself a point, we use backward
ray tracing �path tracing in computer graphics15�.
For backward ray tracing, in accordance with the
reciprocity principle the ray starts to move in a given
direction from the point under consideration and per-
forms random walks inside the IS until it escapes
through the exit port. The type of reflection—
diffuse or specular—is chosen randomly according to
the specularity. If a pseudorandom number �s pro-
duced by the program’s pseudorandom-number gen-
erator is less than the value of specularity S, the
reflection is considered to be specular; otherwise it is

diffuse. The direction of specular reflection can be
computed from the equation

�r � �i � 2�n � �i�n, (7)

where �r, �i, and n are vectors of the direction of
reflection, the direction of incidence, and the normal
to the surface at the incident point, respectively.

The conventional method16 for generating random
directions in accordance with a Lambertian bidirec-
tional reflectance distribution function involves com-
putation of the coordinates � and � of the local
spherical coordinate system after simple transforma-
tion of a pair of pseudorandom numbers according to

� � arcsin���, � � 2���, (8)

with the subsequent transformations to the local Car-
tesian coordinate system and then to the global sys-
tem. After global coordinates ��rx, �ry, �rz� are
determined for the unit vector of the direction of dif-
fuse reflection �̂r, the parametric equations of the
reflected ray �primed coordinates belong to the initial
point of a ray�,

x � x� � �rxt, y � y� � �ryt, z � z� � �rzt,
(9)

should be solved together with the equation for each
surface inside the IS. The point of next reflection is
selected among intercepts of the ray with surfaces as
corresponding to the smallest positive value of pa-
rameter t. The location of the ray intercept with the
spherical surface after diffuse reflection from the
same surface can be substantially accelerated by use
of the following fact: Every sphere that is tangent to
the reflecting surface of a Lambertian reflector in the
point of reflection is a surface of uniform irradiance.
Therefore, to model the sequence of diffuse reflection
points on the internal surface of a sphere it is suffi-
cient to generate the sequence of points uniformly
distributed over this surface. We use the algorithm
of Marsaglia17 to obtain the points uniformly distrib-
uted on the spherical surface x2 � y2 � z2 � 1. The
next pair of pseudorandom numbers, �x and �y, un-
dergoes the linear transformation

ux � 2�x � 1, uy � 2�y � 1. (10)

The points with coordinates x � ux and y � uy are
uniformly distributed within the square ��1 � x, y �
1�. If s � ux

2 � uy
2 
 1, a point is outside the circle

of unit radius, the pair of pseudorandom numbers �x
and �y is rejected, and new pair is generated. Oth-
erwise, the coordinates of the point on the surface of
unit sphere are

x � 2ux�1 � s, y � 2uy�1 � s, z � 1 � 2s.
(11)

For a sphere of radius r, the coordinates of the point
in Eqs. �9� must be multiplied by the value of r.

After each reflection, the radiance of a ray is mul-
tiplied by the value of reflectance at the point of re-

Fig. 3. Angular distributions of radiation source radiant intensity
for � � 0.5, 1, 2.

Table 2. Reflectances of IS Reflectometer Components

Component

Reflectance for Variant
Number

1 2 3 4

Sphere internal surface 0.900 0.950 0.970 0.990
Baffles 0.900 0.940 0.960 0.985
Source 0.500 0.500 0.500 0.500
Reference 0.900 0.900 0.900 0.900
Sample 0.900 0.900 0.900 0.900
Sample and reference holders 0.900 0.940 0.960 0.985
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flection. If the radiance of a ray becomes less than a
predefined threshold value �for instance, 0.0001 of
the initial value�, the trajectory of the ray is termi-
nated. When a ray hits a radiation source, incidence
angle � is calculated. The radiance of a ray, which is
considered as emitted by the radiation source, is com-
puted as

Ls��� �
� � 1

2�
I�0�cos��1 �. (12)

A schematic of backward ray tracing is shown in Fig.
4. For simplicity, the baffles are not shown.

In Fig. 4 the ray is traced in the backward direction
from point 0 in the center of the sample via points 1,
2, . . . , 6 until it escapes through the exit port. The
radiance of this ray propagating from point 6 on the
surface of the radiation source via points 5, 4, . . . , 0
is expressed by

L��� � �1�2 L32

� �1�2�Ls��3s� � �3s�4 L54	

� �1�2�Ls��3s� � �3s�4�5 L65	

� �1�2�Ls��3s� � �3s�4�5 Ls��6s�	. (13)

Averaging of a large number of trajectories permits
evaluation of the radiance of a ray after multiple
reflections:

L��� �
1
n �

i�1

n

�
j�1

mi

Ls��ij� �
k�1

lij

�ijk, (14)

where n is the number of averaged ray trajectories,
mi is the number of impacts onto the source surface in
the ith trajectory, and lij is the number of reflections
between the source and the sample impacts.

To accurately calculate the measured reflectance of
the sample, one must compute the radiant fluxes re-
flected by the sample and reference into the conical
solid angles by cosine-weighted averaging over the

set of ray trajectories uniformly distributed within
the conical solid angle of observation:

�meas � �0

�
i�1

n

Li cos �i

�
i�1

n

L0,i cos �0,i

, (15)

where Li and L0,i are the effective �i.e., with multiple
reflections taken into account� radiance of the ith ray
at the sample and the reference, respectively, and �i
and �0,i are the angles between these rays and normal
vectors to the surfaces of the sample and the refer-
ence, respectively.

Let us compare the mean number of reflections
after which one of two possible events will terminate
the trajectory of a ray. If all components of the IS
have reflectance � and the relative radiance threshold
value is �, the trajectory will be truncated, on aver-
age, after

n� � �log����	 � �ln �

ln �� (16)

reflections ��x	 is the smallest integer greater than or
equal to x�. For � � 0.98 and � � 10�4, n� � 456.

Assume that all reflections are diffuse. By ne-
glecting the geometrical sizes of baffles, source, sam-
ple, and reference, we can evaluate the probability q
for a ray to escape through the exit port as the ratio
of the port-to-sphere areas. Therefore the mean
number of reflections before escape through the exit
port could be evaluated as a mathematical expecta-
tion:

np � �
n�1

�

npn, (17)

where pn is the probability for a ray to escape through
the exit port after n reflections.

Because pn � �1 � q�nq, q � 1, we can find the sum
of the series �Eq. �17�	 as18

np � q �
n�1

�

n�1 � q�n �
1 � q

q
. (18)

If the half-axes of the elliptical port are r0x � 30
mm and r0y � 23 mm, and the sphere radius is 127
mm, then q is �0.01 and np � 0.99. By neglecting
the geometrical sizes of baffles, exit port, sample, and
reference, we can evaluate the mean number of re-
flections ns � �1 � r���r� before the first ray–source
intersection �r� is the source-to-sphere area ratio�.
For r� � 0.0004, ns is �2500. The interrelation
among n�, np, and ns reveals that only a few of the
trajectories carry at least one point that belongs to
the source; many of the rays were traced with no
contribution to the computed radiance. This is the
reason for the slow convergence of the brute force
algorithm that we have described.

Fig. 4. Schematic of inverse ray tracing.
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5. Shadow Rays Algorithm

To perform the parametric studies for our model of
the IS it was necessary to implement a new algorithm
to accelerate the unacceptably slow convergence of
the computational process. �Computation of the
hemispherical distribution of radiance incident onto
a sample on the grid of 91 � 181 nodes with a random
uncertainty of 0.1% requires as many as 90 h on a
2.2-GHz Pentium IV processor PC. Note that the
grid of 91 � 181 nodes is too coarse for the small-scale
features of radiance maps to be detected�. The key
element of the improved algorithm is the use of an
analytical computation of irradiance produced by the
direct source radiation for each point of diffuse reflec-
tion. The irradiation on point P of any surface �see
Fig. 5� is equal to

E�P� � �
S

V�P, dS� Ls��S�
cos �S cos �P

�d2 dS, (19)

where S is the area of a source; V is a vignetting
function, which is equal to 1 if no obstruction exist
between point P and the element dS of a source and
is equal to 0 otherwise; �S and �P are angles between
normals nP and nS, respectively, and the straight line
of length d connecting point P and element dS.

In a discrete form suitable to Monte Carlo ray-
tracing techniques, Eq. �19� can be rewritten as

Ei �
S
m �

j�1

m

VijLS��j�
cos �i cos �j

�dij
2 , (20)

where m is the number of random points chosen on
the surface of a source. An analogous technique in
computer graphics is called the shadow rays algo-
rithm.19

The calculations by Eq. �20� are time consuming,
and the time of computation grows proportionally to
m. The numerical experiments performed shown
that m � 1 is the optimal value by the criterion of

maximum accuracy for the fixed time of computation.
Algorithmically this means that we shall generate only
one random point on the source surface for each diffuse
reflection of ray traced �see Fig. 6�. Some loss of ac-
curacy in the radiance of a single ray is compensated
for by an increase in the number of rays traced.

If 1, 2, 3, . . . is a series of intercepts obtained as a
result of the application of the directional importance
sampling method to the IS with all Lambertian sur-
faces, then �Fig. 6�

Li,0��� � Ls0��0�Vs0 � �1(1
�

E1 � �2�1
�

E2 � �3�1
�

E3

� �4�1
�

E4 � . . .���)
� Ls0��0�Vs0 �

1
�

��1 E1 � �1�2 E2 � �1�2�3 E3

� �1�2�3�4 E4 � . . .�

� Ls0��0�Vs0 �
1
� �

j�1

m

Ej �
k�1

lj

�k (21)

Taking into account that

Ej � SVssj
Ls��sj

�
cos �sj

cos �j

�dsj , j
2 , (22)

we can obtain

L0��� �
1
n �

i�1

n �LSi0��0�VSi0 �
S
�2 �

j�1

mi

LS��Sij
�

�
cos �Sij

cos �ij

dSijj
2 VSijj �

k�1

lij

�k� . (23)

The flow chart for this algorithm is depicted in Fig. 7.
The substantial reduction in total computation

time has been achieved by the use of a time-saving
recipe known by various names: method of depen-
dent trials �tests�,20 method of correlated sampling,21

etc. In essence, in our case we utilize the same set of
ray trajectories for evaluation of the IS reflectometer
with different reflectances but the same specularity
values for its surfaces. According to this method, we
assign a set of M statistical weights to each ray and

Fig. 5. Schematic for calculation of irradiance produced by source
S at point P.

Fig. 6. Schematic of the shadow rays algorithm.
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a corresponding set of M reflectance values to every
surface. After each reflection, the statistical
weights are transformed as

wr,i � �iwi, i � 1, 2, . . . , M, (24)

where �i is the reflectance of a surface and wi and wr,i
are the statistical weights of a ray before and after
reflection, respectively.

The bilateral symmetry of the IS about the image
plane enables one to reduce the random uncertainty
of the computed distributions of radiance incident
onto the sample’s center by averaging the radiances
that come from symmetrical directions. However,

these distributions are intended primarily for visual
perception and evaluation of the IS quality. There-
fore we prefer to not use this implicit approach be-
cause it leads to formation of symmetrical patterns on
the radiance maps.

6. Notes on the Performance of
Pseudorandom-Number Generators

A distinctive feature of these modeling studies is the
necessity to perform large series of Monte Carlo tri-
als. For example, for the computation of the radi-
ance angular distribution for radiation incident onto
the center of the sample or reference, 181 � 361 �

Fig. 7. Flow chart of the algorithm for computing radiance.
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65341 nodes of the hemispherical mesh were used.
For every direction we employed as many as 100,000
rays; each trajectory contains as many as 100 consec-
utive reflections. When all reflections are diffuse,
we must have on average approximately three pseu-
dorandom numbers for each direction. Obviously,
the period of the pseudo-random number generator
�PRNG� must be greater than the total expenditure of
random numbers, i.e., more than 2 � 1012. Another
requirement for the PRNG is good equidistribution.22

The property of t equidistribution means that the
PRNG must generate such pseudorandom numbers
that the t-dimensional points formed by subse-
quences of pseudorandom numbers of length t should
be uniformly distributed over the t-dimensional unit
hypercube. The majority of commercially available
PRNGs have poor equidistribution.23 In our case,
the use of such a PRNG with a measured period of
4,294,967,296 � 232 in the first version of the pro-
gram resulted in the appearance of artifactual peri-
odic patterns of inclined stripes in the radiance
distributions �see Fig. 8�. All artifacts disappeared
�see Fig. 9� after replacement of this PRNG with the
so-called Mersenne Twister generator,24 which pro-
vides an extremely large period of 219937 � 1 and
623-dimensional equidistribution up to 32-bit accu-
racy.

Currently, the Mersenne Twister generator is

freely distributed software. The codes for its algo-
rithm in various programming languages can be
found on the Web at http:��www.math.keio.ac.jp�
�matumoto�emt.html.

7. Results of Numerical Experiments

At the initial stage of modeling, the convergence of
the computational process was investigated. It was
determined that not fewer than 107 rays are required
for achievement of a standard deviation of computed
radiance of �0.1% when the brute force method is
used but only �105 rays are needed when the shadow
rays algorithm is used. Even though the time re-
quired for modeling a single trajectory by the shadow
rays algorithm is several times greater than that for
the brute force algorithm, overall the shadow rays
algorithm is significantly faster. Depending on the
input data used, we obtained a 5- to 15-fold advan-
tage with the use of the shadow rays algorithm.
This is true for ISs with all diffuse surfaces. As the
specularity of the sphere surface increases, the effi-
ciency of the shadow rays algorithm decreases, even-
tually approaching that of the brute force algorithm.

To evaluate the performance of the sphere, we ex-
amined the effects of important parameters on a sam-
ple’s measured reflectance. To develop an
understanding of why and how these effects occur we
examined the radiance distributions. All aspects of
algorithm performance are equally true for both of
these ways of examining sphere performance. The
computed hemispherical distributions of radiance
falling upon the sample center were normalized by
division by their weighted mean values:

L� �
�
i�1

N�

sin �i �
j�1

N�

Lij

nj �
i�1

N�

sin 2�i

, (25)

where weighting factors sin 2�i are proportional to
projected solid angles of appropriate cells of the hemi-
spherical mesh. Cylindrical projections of these dis-
tributions are shown in the color figures �Figs. 10–
17�. Black color indicates that the radiance is less
than the lower limit of the color scale at the right in
each figure; white indicates a level above the upper
limit. For purposes of comparison, the relative ra-
diance range 0.9–1.1 is the same for all those figures.
The black area with its center at � � 7°, � � 180° is
the projection of the elliptic exit port �zero radiance�.
The dark quadrangle lying on the bottom axis close to
� � 0° is the projection of the baffle between the
radiation source and the sample.

Figures 10–13 present these distributions for an IS
reflectometer composed only of purely diffuse sur-
faces and for a Lambertian radiation source. Each
of these figures corresponds to one variant of the
surfaces reflectances from Table 2. The sequence of
Figs. 10–13 illustrates the improvement in the radi-
ance distribution nonuniformity from 10–12% to
2–3% as the sphere reflectance increases from 0.9 to
0.99. As a result of the use of the method of corre-

Fig. 8. Artifactual pattern in a color map of the hemispherical
distribution of radiance incident onto a sample center �a standard
commercial PRNG was used�.

Fig. 9. Same distribution as in Fig. 8 but computed with the use
of a Mersenne–Twister PRNG.
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lated sampling, we obtained the output values for all
four values of sphere reflectance in Table 2 from a
single run of the program.

In Figs. 10, 14, and 15 the radiant intensity distri-
bution I��� of the radiation source �see Eq. �6� and Fig.
3	 is varied, with � � 1, 0.5, 2, respectively. For

those figures all surfaces are purely diffuse and the
wall reflectance is 0.90 �Variant 1, Table 2�. A com-
parison of these figures illustrates the importance of
the initial first-bounce irradiance distribution of the
sphere on the nonuniformity of the sample’s incident
radiance distribution. Even for a wall reflectance of

Fig. 10. Hemispherical distribution of radiance incident onto the
sample center; 10,000 rays were traced for every N� � N� � 181 �
361 points of a uniform grid. Radiation source with � � 1. All
specularities are 0; reflectances from Variant 1 of Table 2.

Fig. 11. Hemispherical distribution of radiance incident onto the
sample center; 10,000 rays were traced for every of N� � N� �
181 � 361 points of a uniform grid. Radiation source with � � 1.
All specularities are 0; reflectances from Variant 2 of Table 2.

Fig. 12. Hemispherical distribution of radiance incident onto the
sample center; 10,000 rays have been traced for every of N� � N� �
181 � 361 points of a uniform grid. Radiation source with � � 1.
All specularities are 0; reflectances from Variant 3 of Table 2.

Fig. 13. Hemispherical distribution of radiance incident onto the
sample center; 10,000 rays have been traced for every N� � N� �
181 � 361 points of a uniform grid. Radiation source with � � 1.
All specularities are 0; reflectances from Variant 4 of Table 2.

Fig. 14. Hemispherical distribution of radiance incident onto the
sample center; 10,000 rays have been traced for every N� � N� �
181 � 361 points of a uniform grid. Radiation source with � � 0.5.
All specularities are 0; reflectances from Variant 1 of Table 2.

Fig. 15. Hemispherical distribution of radiance incident onto the
sample center; 10,000 rays have been traced for every N� � N� �
181 � 361 points of a uniform grid. Radiation source with � � 2.
All specularities are 0; reflectances from Variant 1 of Table 2.
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0.97 �not shown� one finds variations of 8–10% in the
radiance distribution for both � � 0.5 and � � 2.

The effects of adding a specular component to the
reflection of the IS internal surface are shown in Figs.
16 and 17, which illustrate the abrupt transformation
in the distribution of incident radiance. In these
distributions we can observe the series of erect and
inverted images of the radiation source and the open-
ing, with the decreasing intensities. In reality, the
reflectance from specular-diffuse surfaces contains a
specular lobe rather than a specular spike; thus the
sharp edges of the images that one can observe in
Figs. 16 and 17, especially the higher orders, will be
significantly reduced. Nevertheless, any deviation
from a perfectly diffuse surface can be expected to
result in nonuniformity of the radiance distributions,
and the results from the specular-diffuse case can be
expected to describe qualitatively the results from a
more-realistic lobed specular configuration.

These radiance distributions and additional stud-
ies can be used for visual analysis of the sphere ref-
lectometer and to perform design optimization. Our
numerical model of the IS reflectometer will also be

useful in the mathematical processing of experimen-
tal data. For a comparison of a specular-diffuse sam-
ple with a diffuse reference, a systematic uncertainty
may occur. Its value should be a complicated function
of system geometry, optical characteristics of the sur-
faces included in the system under modeling, etc.

In Fig. 18 the dependence of the measured sample
reflectance on sphere and baffle specularity is shown
for six values of sample specularity. Reflectance
values have been taken from Variant 1 of Table 2.
The largest uncertainties occur for high specularities
of the sample and internal surface of the IS. The
uncertainty remains small for sphere and baffle
specularity less than 0.5. This region is expanded in
the inset of Fig. 18.

A comparison of a purely specular sample with a
purely diffuse reference is the extreme case for sys-
tematic uncertainty in such a measurement. In Fig.

Fig. 16. Hemispherical distribution of radiance incident onto the
sample center; 50,000 rays have been traced for every N� � N� �
181 � 361 points of a uniform grid. Radiation source with � � 1.
Sphere and baffles specularities are 0.2; all other specularities are
0; reflectances from Variant 1 of Table 2.

Fig. 17. Hemispherical distribution of radiance incident onto the
sample center; 80,000 rays have been traced for every N� � N� �
181 � 361 points of a uniform grid. Radiation source with � � 1.
Sphere and baffles specularities are 0.4; all other specularities are
0; reflectances from Variant 1 of Table 2.

Fig. 18. Measured sample reflectance relative to sphere and baf-
fle specularity for several values of sample specularity. Reference
specularity is 0; reflectances from Variant 1 of Table 2; � � 1.
Sample specularity: F, 0; E, 0.2; }, 0.4; {, 0.6; �, 0.8; and ƒ, 1.

Fig. 19. Measured reflectance of a purely specular sample rela-
tive to sphere and baffle specularity. Reference specularity is 0;
� � 1. For four variants of reflectance from Table 2. Variant:
F, 1; E, 2; }, 3; and {, 4.
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19 the dependence of the measured reflectance of a
purely specular sample on sphere and baffle specu-
larity is depicted for four variants of surface reflec-
tance values from Table 2. For high values of sphere
and baffle specularity, the maximum deviation from
the true value is obtained for ISs with low values of
internal surface reflectance. But for sphere and baf-
fle specularity less than 0.5 �Fig. 19, inset�, we can
observe an inversion of this order.

To achieve a level of random uncertainty of the
computation of less than 0.1% �in the majority of
cases, of less than 0.05%�, we used 10 trials, with 107

rays in each. Calculations of the mean value and
standard deviation were used for every point shown
in Figs. 18 and 19.

8. Conclusion and Prospects for Further Development

We have developed a flexible algorithm and special-
ized software intended for efficient numerical model-
ing of an integrating sphere reflectometer. The
resultant program was applied to modeling of a spe-
cific measurement facility. We used the program to
compute the hemispherical distributions of radiance
for radiation incident onto a sample in the reflecto-
meter. The influence of critical factors such as the
angular distribution of radiant intensity of the radi-
ation source and the reflectance and specularity of
the sphere’s internal surface was examined. Correc-
tions for the systematic uncertainty that is due to
specular components of reflection of the sample and
the IS internal surface were computed.

We shall use the radiance distributions shown in
this paper to obtain uncertainty contributions to the
eventual measurements of sample reflectance. No
analytical methods for performing this type of anal-
ysis are available. The results will also be used to
improve the eventual sphere design. Some obvious
routes to improvement include adjusting the baffle
reflectances on both sides to better match the sur-
rounding radiance levels and making a significant
effort to produce as nearly as possible a Lambertian
distribution for the input light source. �The analo-
gous requirement to be met for a directional-
hemispherical design would be to have a detector
with uniform response relative to input angle.�

Although we used distribution of radiation source
radiant intensity proportional to cos� �, the software
permits incorporation of an arbitrary distribution, in-
cluding a measured distribution, with interpolation be-
tween tabulated values. We plan also to incorporate
into our reflectometer model program the procedure
for sampling of the directions of reflection in accor-
dance with physically plausible bidirectional reflec-
tance distribution functions for all sphere components.

We have developed a fast and reliable ray-tracing
algorithm that can be used for numerical modeling of
various IS-based instruments, including measure-
ment of the optical characteristics of opaque and
transparent materials, and for production of an ex-
tended uniform-radiance calibration source.25
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