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An algorithm based on the Monte Carlo method is described that permits the precise calculation of
radiant emission characteristics of nonisothermal blackbody cavities for use as standard sources in
radiometry, photometry, and radiation thermometry. The algorithm is realized for convex axisymmetric
specular-diffuse cavities formed by three conical surfaces. The numerical experiments provide esti-
mates of normal effective emissivities of cylindrical blackbody cavities with flat or conical bottoms for
various axisymmetric temperature distributions on the cavity walls.
1. Introduction

Blackbody cavities arewidely used as standard sources
in radiometry and spectroradiometry of noncoherent
optical radiation, from the ultraviolet to the far
infrared, and in radiation thermometry. Ideally, such
a cavity should have isothermal walls at some tem-
perature T0 and a small outlet for radiation to escape.
Spectral characteristics of the radiation from the
cavity can be calculated by the use of Planck’s law,
with the spectral effective emissivity of the cavity
taken as a correction factor for disturbances from
thermodynamic equilibrium.
In accordance with the extended Kirchhoff law for

isothermal cavities1 and the reciprocity theorem, and
provided that the cavity walls are opaque, we can
write

ee01l, j, v2 5 ae01l, j, 2v2 5 1 2 re01l, j, 2v2, 112

where ee0, ae0, and re0 are the effective emissivity,
absorptivity, and reflectivity of the isothermal cavity,
respectively; l is the wavelength; j is the radius
vector to the cavity inner surface; and v is the
direction of observation. Equation 112 makes it pos-
sible, in principle, for one to check experimentally the
calculated effective emissivities of isothermal cavities
by measuring their effective reflectivities with appro-
priate exposure conditions.
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In fact, one cannot reach the ideal isothermality of
the cavity walls, and a nonuniform temperature distri-
bution on the emitting surface results in ambiguity in
the reference temperature, T0. For example, if the
selected reference temperature is below the lowest
temperature on the cavity walls, then all spectral
effective emissivity values of the nonisothermal cav-
ity, ee1l, j, v, T02, will exceed unity.
Because there are no direct methods for measuring

the effective emissivities of nonisothermal cavities, it
is necessary to develop independent methods of calcu-
lation to permit accurate corrections to be made for
cavity geometry, spectral and angular functions of
optical characteristics of the cavity walls, observation
conditions, and other factors.
For diffuse cavities 1i.e., cavities whose inner sur-

faces radiate and reflect in accordance with the
Lambert cosine law2, one can find the distribution of
the local effective emissivities on the walls by solving
the integral equations for radiation heat exchange.
Numerical solutions for conical, cylindrical, cylindro-
conical, and biconical cavities have been obtained2–4
by the use of the zonal approximation of the integrals
and the iteration technique to solve the resultant
system of linear equations. A cylinder with a reen-
trant conical base featuring mutual shadowing of the
inner surfaces has been investigated in a similar
manner.5 The iterative procedure and finite-differ-
ence approximation of iterated kernels have been
used6 for calculating the effective emissivities of
nonisothermal diffuse cavities of the classic geometri-
cal shapes.
Although one can calculate the effective emissivi-

ties of nonisothermal, nondiffuse cavities by sum-
ming up contributions of successive radiation reflec-
tions, the complexity of the calculation of the multiple
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integrals causes one either to correct for only two
reflections7 or to approximate distributions of re-
flected flows on the cavity walls by their average
values.8 Such simplifications may result in uncon-
trollable errors in the calculation.
As computer facilities are continuously being im-

proved, the Monte Carlo method is used more and
more frequently. It offers such advantages as the
same approach to problems with various geometries,
the possibility of correcting for real angular distribu-
tions of radiation flows, and the efficient and simple
correction of the initial mathematical model. Among
the modifications of the Monte Carlo method as
applied for the calculation of cavity radiation charac-
teristics, one can select algorithms based on either the
geometric and probability approach9 or on the energy
approach.10 The former uses a random particle walk
in the cavity to estimate the probability of certain
events 1e.g., escape of a particle from the cavity after a
certain combination of specular and diffuse reflec-
tions2 in order to calculate emissivities of isothermal
cavities. The latter deals with random trajectories
along which radiation having certain energy charac-
teristics is propagated, and it can be applied to
nonisothermal cavities.
We discuss a modification of the Monte Carlo

method that uses the geometric and probability ap-
proach to calculate radiation characteristics of isother-
mal cavities and the energy approach to calculate
corrections for nonisothermal conditions.11 An algo-
rithm is described that ensures a reduced dispersion
in the calculated value. It has been applied to a
variety of axisymmetric cavities.

2. Analysis Restrictions

The cavities for the calculations were axisymmetric
and coaxial, and they were formed by three conical
surfaces 1Fig. 12. By varying the linear and angular
dimensions one can cover a variety of geometrical
configurations, including simple shapes such as cones,
cylinders, and double cones.
It is assumed that the walls of the cavity are opaque

and that their optical characteristics are constant on

Fig. 1. Cavities to which the calculation is applied.
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the whole inner surface and are temperature indepen-
dent within the range from the lower temperature-
distribution boundary to the upper one. The cavity
inner surface is assumed to radiate diffusely with a
spectral emissivity e1l2, i.e., Lambert’s cosine law is
valid for the self-radiation intensity.
In accordance with Kirchhoff’s law,

e1l2 1 r1l2 5 1, 122

where r1l2 is the spectral reflectivity. Reflections
from the cavity walls are described by a uniform
specular-diffuse model,9 according to which the spec-
tral reflectivity, r1l2, does not depend on the radiation
incidence angle and is a sum of specular components,
rs1l2, and diffuse components, rd1l2. Surface diffusiv-
ity, defined as

D 5
rd1l2

r1l2
, 132

is constant within the wavelength range under consid-
eration, from l1 to l2. Polarization effects can be
ignored by the assumption that the radiation is
depolarized after multiple reflections.

3. Calculation Algorithm

The effective spectral radiance of the radiation from
the cavity aperture can be written as

Le1l, j, v2 5 ee1l, j, v, T02LBB1l, T02, 142

where l is the wavelength, j is the radius vector of the
radiating surface point, v is the direction of observa-
tion, T0 is the reference temperature, ee is the spectral
effective emissivity of the nonisothermal cavity, and
LBB is the blackbody spectral radiance. It is obvious
that specifying different T0 values for the same radi-
ance being measured, Le, will result in different
functions, ee and LBB.
Let us represent ee by the following equation:

ee1l, j, v, T02 5 ee01l, j, v2 1 Dee1l, j, v, T02, 152

where the first term on the right-hand side represents
the spectral effective emissivity of the isothermal
cavity, whereas the second term is a correction for
nonisothermal conditions.
We briefly describe the Monte Carlo algorithm for

the calculation of the effective emissivities of isother-
mal cavities based on Eq. 112. The incident radiation
is considered to consist of a rather large number of
particles 1photon bundles2. Initially each particle is
assigned a statistical weight of unity. A particle is
incident upon the aperture from the point of observa-
tion outside the cavity in the direction of observation,
and it interacts with the wall. After that, the radius
vector of the first interaction point, j1, is found. To
determine the type of the interaction, we select a
pseudorandom number, Hd, from the general popula-
tion that is uniformly distributed on the interval
10, 12; the reflection is considered diffuse if Hd , D
and is specular otherwise. In the event that reflec-



tion is specular, the statistical weight of the particle is
transformed as follows:

W 5 r1l2W8, 162

whereW8 andW are the statistical weights before and
after reflection, respectively.
When the reflection is specular, unit vectors describ-

ing the directions of incidence, v8, and reflection, v,
are related by the following equation:

v 5 v8 2 2n1nv2, 172

where n is the inner, unit-length, normal vector to
the cavity surface at the point of interaction. If the
reflection is diffuse then the diffuse angle factor,
F1j2,12 must be calculated between the surface ele-
ment at the point of interaction, j, and the cavity
aperture:

F1j2 5 11p2 e
V

cos ujdV, 182

where V is the solid angle subtended by the aperture
from the point j, and uj is the angle between the
normal to the cavity wall at point j and the axial
direction of the elementary solid angle,V. The statis-
tical weight of the particle can be transformed by the
use of the following formula:

W 5 r1l231 2 F1j24W8. 192

If the first reflection is diffuse, then the method of
trajectory splitting is used: the particle gives birth
to n0 descendants, each one having a statistical
weight of W@n0 and continuing random walks along
its trajectories. Optimum value n0 should be found
empirically and can be estimated to be 1@11 2 ee020.5.
For themajority of practical blackbodies,n0 5 10–100.
In the event of diffuse reflection, the direction of
particle reflection is determined randomly. Two
regular random numbers, Hu and Hf, are trans-
formed into angular coordinates, u and C, of the
spherical system with the center at the point of
reflection12:

u 5 arcsinŒHu, 1102

f 5 2pHf. 1112

These in turn are transformed into components of the
normal vector, v.
After finding the direction of particle movement, v

with vx, vy, and vz components, one can calculate the
x, y, z components of the radius vector of a regular
particle interaction with the cavity wall, j, on the
basis of a joint solution of the following parametric
equations of the particle trajectory,

x 5 x8 1 vxt, 1122

y 5 y81 vyt, 1132

z 5
 z81 vzt 1142

1primed coordinates are related to the point of previ-
ous interaction2 and the following cavity surface equa-
tion:

x2 1 y2 2 1z 2 z0i22tan21xi@22 5 0. 1152

Here z0i are coordinates of the vertices of the conical
surfaces forming a cavity, xi are the angles at these
vertices 1see Fig. 12, and

i 5 1 with 0 , z , z1,

5 2 with z1 , z , z2,

5 3 with z2 , z , z3.

If the particle leaves the cavity after a diffuse
reflection then the last trajectory is ignored, because
the weight of the particle that left was already taken
into account by means of the diffuse angle factor.
Thus the particle trajectory ends if either the particle
leaves the cavity as a result of a specular reflection or
the descendant particle has a statistical weight of less
than a certain prespecified value, defining the appro-
priate nonexcluded error.
The statistical modeling ends when the necessary

number of trajectory realizations, n, is reached. The
cavity effective emissivity can be estimated by means
of the following formula:

ee1l, j, v2 5 1 2 1 1nn02 oi51

n

o
j51

n0i

o
k51

mi j

rk1l2F1ji jk2

3 p
l51

k21

31 2 F1ji jl24, 1162

where n0i 5 n0 for the first diffuse reflection, n0i 5 1
for the first specular reflection, ji jk is the radius vector
of the kth reflection of the jth descendant of the ith
particle, and mij is the number of reflections in the
trajectory of the jth descendant of the ith particle.
In the event of specular reflection, F1j2 5 1 if the
particle leaves the cavity through the aperture; other-
wise, F1j2 5 0.
To calculate the effective emissivity of the noniso-

thermal cavity, we make use of the reciprocity theo-
rem and the same particle trajectories as when we
calculate the effective emissivity of the isothermal
cavity. By calculating the spectral radiance, LBB, at
a wavelength of l and at temperatureTi jk of the cavity
surface at the point of interaction, and by summing
up their products into appropriate degrees r1l2, we can
obtain the following estimate of the effective spectral
radiance:

Le1l, j, v2 5
e1l2

nn0
o
i51

n

o
j51

n0i

o
k51

mi j

rk211l2LBB1l, Ti jk2gi jk,

1172

where Ti jk is the temperature of the cavity surface at
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the point of the kth reflection of the jth descendant of
the ith particle, and gi jk 5 1 until the next diffuse
direction passes through the cavity aperture, after
which gi jk 5 0.
From Eqs. 142 and 1172we have

ee1l, j, v, T02

5
e1l2

nn0LBB1l, T02
o
i51

n

o
j51

n0i

o
k51

mi j

rk211l2LBB1l, Ti jk2gi jk. 1182

For isothermal cavity Ti jk 5 T0, therefore, the esti-
mated effective emissivity of the isothermal cavity is
obtained from Eq. 1182 as follows:

ee01l, j, v2 5
e1l2

nn0
o
i51

n

o
j51

n0i

o
k51

mi j

rk211l2gi jk. 1192

The numerical experiments performed have shown
that, when all other conditions are equal, the algo-
rithm described by Eq. 1162 provides a 2–3 times
decrease in the standard deviation as compared with
that described by Eq. 1192. For that reason, a com-
bined algorithm is used: ee01l, j, v2 is estimated ac-
cording to Eq. 1162, whereas Dee1l, j, v2 is derived from
Eq. 1182.
By subtracting Eq. 1192 from Eq. 1182we obtain

Dee1l, j, v, T02 5
e1l2

nn0LBB1l, T02
o
i51

n

o
j51

n0i

o
k51

mi j

rk211l2

3 3LBB1l, Ti jk2 2 LBB1l, T024gi jk.

1202

By summing up Eq. 1162 and Eq. 1202 for the combined
algorithm we obtain
564
ee1l, j, v, T02 5 1 1
1

nn0 oi51

n

o
j51

n0i

o
k51

mi j

5r
k211l2e1l23LBB1l, Ti jk2 2 LBB1l, T024gi jk

LBB1l, Ti jk2
2 r1l2F1ji jk2 p

l51

k21

31 2 F1ji jl246 . 1212
Thus, the algorithm described above represents the
modeling of a great number of trajectories splitting at
the point of the first reflection 1if it is diffuse2, the
calculation of diffuse angle factors and spectral radi-
ances at reflection points, and the calculation of
effective emissivities determined according to Eq.
1212.
The normal effective emissivity, een, is important in

practical precise radiometry. To calculate it, one
models the initial trajectory sections to be parallel to
the plane axis and to be uniformly distributed on the
aperture cross section. For evaluation of the accu-
racy of the proposed algorithm with n 5 1000 and
n0 5 20, the calculations of the normal effective
emissivities of diffuse cavities described in Refs. 2, 4,
and 6 have been executed. For isothermal cavities
8 APPLIED OPTICS @ Vol. 34, No. 25 @ 1 September 1995
with ee0n . 0.9 the divergence does not exceed 0.0001,
and for nonisothermal cavities with 01 2 een 0 , 0.1 the
divergence is equal to 0.0001–0.0004. A comparison
with the results for isothermal specular-diffuse cavi-
ties considered in Ref. 9 has shown good agreement
with our results.

Fig. 2. Spectral normal effective emissivities of a cylindrical
cavity for the first family of temperature distributions.
was assumed that the bottom of the cavity and the
adjacent three quarters of the cylindrical generatrix
were isothermal at a temperature of 2800 K, and that
there was a linear decrease to temperature Tz
12786, 2772, 2744, and 2688 K2 in the edge of the
cylindrical part of the cavity 1see Fig. 22.
For the second family of temperature distributions

it was assumed that the bottom and the adjacent half
of the cylindrical generatrix were isothermal at a
temperature of 2800 K, and that there was a linear
decrease to temperature Tz in the other cylindrical
part 1temperatures were the same; see Fig. 32.
For the third family of temperature distributions it

was assumed that the bottom and the adjacent quar-
ter of the cylindrical generatrix were isothermal at a
temperature of 2800 K, and that there was a linear
4. Cylindrical Cavity with Flat Bottom

The object for the numerical experiments was a
cylindrical graphite cavity with a flat bottom and a
flat diaphragm, having the following geometric param-
eters: aperture radius R0 5 0.5, cylinder radius
R0 5 1, and cavity length Z3 5 10 1parameters are
given in relative units2. Within the spectral region of
0.3 to 10 µm, the cavity inner surface is diffuse 1D 5 12
and has constant emissivity e1l2 5 0.8. Spectral
normal effective emissivities for six families of tem-
perature distributions on the cavity generatrix have
been computed.
For the first family of temperature distributions it



decrease to temperature Tz in the other three quar-
ters of the cylindrical generatrix 1temperatures were
the same; see Fig. 42.
For the fourth family of temperature distributions

it was assumed that the bottom of the cavity was
isothermal at a temperature of 2800 K, and that there
was a linear decrease to temperature Tz in the edge of
the cylindrical part 1temperatures were the same; see
Fig. 52.
For the fifth family of temperature distributions it

was assumed that the bottom center temperature was
2800 K, there was a linear increase to temperature Tz
to the bottom periphery 12801, 2802, 2803, and
2804 K2, and that the rest of the cavity was isothermal
at temperature Tz 1see Fig. 62.
For the sixth family of temperature distributions it

was assumed that the bottom center temperature was
2800 K, there was a linear decrease to temperature Tz
to the bottom periphery 12799, 2798, 2793, and
2786 K2, and that the rest of the cavity was isothermal
at temperature Tz 1see Fig. 72.
In each of the above cases the bottom center

temperature 1equal to 2800 K2 was taken as a refer-
ence temperature, and the diaphragm of the cavity
was isothermal at the temperature Tz. Spectral
normal effective emissivities calculated for the above

Fig. 4. Spectral normal effective emissivities of a cylindrical
cavity for the third family of temperature distributions.

Fig. 3. Spectral normal effective emissivities of a cylindrical
cavity for the second family of temperature distributions.
six families of temperature distributions are given in
Figs. 2–7, respectively.

5. Cylindrical Cavity with Conical Bottom

The numerical experiments have also been carried
out for a cylindrical cavity with a conical bottom and a
conical diaphragm, having the following geometric
parameters: aperture radius R0 5 0.5, cylindrical
part radius R1 5 1, cavity length Z3 5 10, conical
bottom angle x1 5 120°, and conical diaphragm angle
x3 5 90°. The cavity was made of stainless steel.
After a special mechanical treatment that ensured
the diffusivities of the bottom and the diaphragm of
D1 5 D3 5 0.2 and of the cylindrical part of D2 5 0.8
within the wavelength range of 10 to 25 µm, the inner
surface of the cavity was oxidized.
The model hemispherical spectral emissivities of

the flat specimen of stainless steel for further calcula-
tion are shown in Fig. 8 1see, e.g., Ref. 132. The
cavity spectral normal effective emissivities were
calculated for the following five temperature distribu-
tions: first and second, the cavity bottom is isother-
mal at a temperature of 1000 K, there is a linear
decrease in temperature along the cylindrical wall to
980 and 950 K, respectively, and the diaphragm has a

Fig. 5. Spectral normal effective emissivities of a cylindrical
cavity for the fourth family of temperature distributions.

Fig. 6. Spectral normal effective emissivities of a cylindrical
cavity for the fifth family of temperature distributions.
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constant temperature equal to the cylindrical edge
temperature; third through fifth, the bottom center
has a temperature of 1000 K, the temperature in-
creases linearly to the periphery of the bottom to
1001, 1002, and 1005 K, respectively, and the cylindri-
cal part and diaphragm of the cavity are at the same
constant temperatures. In each of these cases the
conical bottom center temperature 1equal to 1000 K2
was taken as a reference temperature. Results from
the calculations are given in Fig. 9. As follows from
the results of the calculation, the behavior of een1l, T02
is mainly determined by l dependence when the
nonisothermality of the cavity walls is negligible.
The nonlinear distortions in the short-wave region
increase simultaneously with increasing nonisother-
mality, especially along the visible part of the cavity
bottom.

6. Reference Temperature Selection

When calculating spectral effective emissivities of
nonisothermal cavities, most researchers prefer to
take the bottom center temperature as a reference.
For some types of temperature distributions, how-
ever, such a choice may result in a substantial
nonuniformity of the spectral effective emissivity
distributions in wavelengths, especially in the short-
wave region. This, in turn, results in small wave-
length variations that cause significant variations in

Fig. 7. Spectral normal effective emissivities of a cylindrical
cavity for the sixth family of temperature distributions.

Fig. 8. Spectral hemispherical emissivities of a flat specimen of
oxidized stainless steel.
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effective emissivity, which may cause an increase of
errors in some computing operations.
Numerical experiments have been carried out for

the cavities discussed in Sections 4 and 5 to investi-
gate the influence of the selected reference tempera-
ture on the nature of the dependence, een1l, T02. For
the cylindrical cavity with a flat bottom and a flat
diaphragm, the temperature distribution was mod-
eled by the specification of temperatures at the follow-
ing points: the bottom center, 2800 K; the bottom
periphery, 2797 K; the cylindrical generatrix center,
2744 K; and the diaphragm edge near the aperture,
2744 K. For the cylindrical cavity with a conical
bottom and a conical diaphragm, temperatures at the
same points were 1000, 1000.5, 990, and 980 K.
Temperatures between these points were obtained by
means of cubic spline interpolation. Results from
the calculations for various reference temperature
values are given in Figs. 10 and 11.
The analysis of these results has made it possible to

form the following hypothesis. For any nonisother-
mal cavity with prespecified geometric parameters,
wall radiation characteristics, temperature field, and
observations, there is a reference temperature, T0*,
at which effective emissivities are equal to appropri-
ate values of the same isothermal cavity. This hy-
pothesis was checked by means of numerical experi-
ments for various blackbody cavities and temperature

Fig. 9. Spectral normal effective emissivities of a cylindroconical
cavity.

Fig. 10. Spectral normal effective emissivities of a nonisothermal
cylindrical cavity for five reference temperatures.



distributions. Normal, hemispherical, and conical
solid-angle-averaged spectral effective emissivities
were calculated. In each of the cases, by selecting
the reference temperature we managed 1within the
calculation error2 to make the correction for the cavity
nonisothermality, Dee1l, T02, equal to zero.
The selection of the reference temperature essen-

tially influences the behavior of the spectral effective
emissivity as a function of wavelength. The correct
selection of the reference temperature allows us to
avoid inconvenient values of ee . 1 1the arbitrary
selection of reference temperature allows us to assign
to ee an arbitrary value, from zero to infinity2 and
allows us to compare the radiative properties of cavity
radiators correctly. For each nonisothermal cavity,
there is a characteristic reference temperature 1call it
the optimal reference temperature, Te*2, at which the
spectral effective emissivity coincides with that value
for the same isothermal cavity. Unambiguous corre-
spondence between the temperature distribution func-
tion and the effective reference temperature makes it
possible to characterize each temperature distribu-
tion by its Te* number instead of by the e1l, T02
function with the same spectral effective emissivity of
the isothermal cavity, ee1l2.

7. Conclusion

The main conclusion from our numerical experiments
is as follows. The degree of nonisothermality of that
part of the radiating surface that can be observed by
the detecting equipment is dominant in the influence
on the spectral effective emissivities of the cavity.
The more distant the essentially nonisothermal part
of the cavity, the lower its influence on the spectral
effective emissivity. Therefore, in some cases, the
efforts of development engineers to reach isothermal-
ity of the whole cavity surface are excessive.
The proposed approach to the selection of reference

temperature of the nonisothermal cavities allows us
to avoid the uncertainty in its radiation characteris-
tics and to compare the values of effective emissivities

Fig. 11. Spectral normal effective emissivities of a nonisothermal
cylindroconical cavity for five reference temperatures.
of different blackbody cavities correctly. It is obvious
that the optimal reference temperature, Te*, can be
represented as a certain surface-averaged value,

T0* 5
1

S e
S

T1j2Q1j2dS, 1222

where Q1j2 is a weight function specified by the cavity
geometry, the cavity wall radiation characteristics,
and the observation conditions. Apparently a gen-
eral form of Q1j2 can be indicated a priori, at least for
diffuse cavities.
The algorithm described above for the calculation of

effective emissivities of cavities has demonstrated
good accuracy and universalism. The part of the
algorithm that realizes random particle walks is easy
to modify for the calculation of parameters of cavities
of other geometric configurations, including those
with self-shadowing surfaces 1a reentrant conical
bottom, inner partitions2, asymmetrical cavities, and
the like. The algorithm can also be easily modified
for cavities with an arbitrary distribution of optical
characteristics on the inner surface.
By specifying the angular distribution of the initial

trajectory sections, one can vary cavity observation
conditions, calculating the semispherical average in a
certain conical solid angle or directional effective
emissivities. Only the absence or shortage of experi-
mental data may prevent the development of a model
that is closer to reality than the isotropic specular-
diffuse cavity to be used for radiation characteristics
of the inner walls.
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