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1. Objectives of Work and Design Targets 
 
 
The major design requirements and targets are shown below in the Table 1. 

 
 

Table 1. BB100-V1 Design Targets 
 

Parameter Required Value 

Maximum operating temperature 350 K (77ºC) 

Minimum operating temperature 240 K (-33ºC) 

Spectral range 1.5 m – 15 m 

Cavity effective emissivity 0.99 

Opening (non-precision aperture) Ø100 mm 

System Field-of-View (FOV) 12 mrad (0.688º) 

Vacuum chamber (10-6 Torr, below 100 K) 
Environment operation conditions 

Air environment (clean room at 23 ± 3ºC) 

Temperature non-uniformity across opening 0.1 K 

Temperature set point resolution 0.01 K 

Maximum temperature instability under thermostabilization 0.05 K 

Limitation on the blackbody warning-up time (approx.) 2 hrs. 

Total Wattage (approx.) 2500 W 

Input Voltage 100 V AC or 200 V AC 

Blackbody temperature set up and control External controller with RS-232 
interface to (optional) PC computer 

Temperature sensor for control system Pt RTD 

Thermometers of blackbody 5 pieces 

Calibration traceability of Pt RTD to NIST Yes. Calibration traceability to NIST is assumed for 
1 (one) Pt RTD only 

Operating Environment Pressure 10-6 Torr 

Orientation of the blackbody Facing down (±30º leaned) 

Cable length 5 m for inside vacuum chamber and 5 m for outside chamber 
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2. General Background and Design 
Concepts Developing 

 
 

2.1. Black coating selection 
 
 

While identifying appropriate coating for BB-100V1 bottom, we were looking for black 
materials or paints possessing emissivity better 0.9 in the spectral range of interest, as 
well as low outgassing properties. There are several comprehensive reviews [1-6] on 
application and optical properties of black paints and various coatings to stray light 
suppressing, solar energy absorbing, for thermal detectors of optical radiation, radiation 
losses control, etc. After comparative analysis of literature data, the Nextel (former 3M) 
Velvet Coating 811-21 was chosen.  
 
 

0.935

0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Wavelength (μm)

E
m

is
s

iv
it

y

[10]

[11]

[12]

 
 

Fig. 1. Spectral emissivity of Nextel Velvet Coating 811-21 according to [10-12]. 
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This black coating uses extensively in infrared radiometry during more than 25 years [7-
12]; it can be exploit in cryo-vacuum environment. Moreover, Vega International has a 
broad experience of its use in a variety of radiometric systems developed. The data on 
spectral emissivity of Nextel 811-21 extracted from [10-12] are depicted in Fig. 1.  
 
The curve obtained by PTB (Germany) [11] is the spectral normal emissivity; another 
curve obtained by BNM/LNE (France) [12] is the spectral directional emissivity for the 
angle of 12º with the normal. Only the curve [10] spans the entire spectral range of 
interest. The spectral dependences shown in Fig. 1 are obtained under different 
measurement conditions; the coatings are laid on various substrates. Furthermore, the 
optical properties of paint depend substantially upon individual style of its application. 
For our purposes, it is enough to assume that the spectral hemispherical emissivity of 
Nextel 811-21 is within 0.935…0.990 interval for wavelength range from 1.5 to 15 μm. 
The measurements of reflectance performed for the predecessor of Nextel 811-21, the 3M 
Velvet Black [4], show the presence of a small specular component, less than 10% from 
overall hemispherical reflectance; the diffuse component of reflectance has the near-
Lambertian BRDF [6]. 
 
Nextel® Velvet Coating 811-21 can be purchased from Mankiewicz Gebr. & Co [13]; the 
recommendations of its application can be found at www.upcoat.com. It is recommended 
to use Nextel® Primer 5523 as a ground and Nextel® 8061 as a solvent. After filtration 
using the 500/850 filter, the coating should be air-sprayed under pressure of 3.0-4.0 Bar 
through the spray-nozzle of 1.5 – 1.8 mm in diameter. The drying time is 15-20 min. 
Outgassing can be performed ambient temperature for 24 hrs, or, at elevated temperature, 
after 15-40 min of withering in area. The outgassing time in a furnace is 60 min at 80ºC; 
30 min at 120ºC. 
 

 
 

2.2. Selection of Method for Cavity Thermal Stabilization 
 
 
The following main methods are used to attain the temperature uniformity of radiating 
cavities:  
 

1. Radial heat pipe as a structure with very high effective thermal conductivity can 
be used for thermal stabilization of a radiating cavity [14, 15]. However, it is 
difficult to span entire temperature range under consideration (240 K to 350 K, or 
about –33ºC to +77ºC) by one heat pipe with a particular heat transfer agent. So, 
ammonia heat pipe works effectively only within –60ºC to +50ºC temperature 
range; water heat pipe – from 50ºC to 270ºC. 

2. Implicit resistive heating. This simplest method employs electric heating elements 
to ensure isothermality of a cavity (see, for instance, [22, 23]). To compensate 
variable heat losses from internal surface of a cavity, one can applied non-uniform 
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arrangement of heater, or non-uniform input of electric power to separate heating 
elements. 

3. Immersing the cavity radiator into liquid bath [16-19]. This method is unfitted to 
vacuum environment. 

4. Thermal stabilization of a cavity by a liquid agent fed from an external thermostat 
[20,21]. 

 
As it was agreed with the customer, the last method of thermal control and stabilization 
has been approved for BB100-V1. 
 
 
 
 

3. Choice of Cavity Shape and 
Preliminary Assessment of Effective 

Emissivity 
 
 

3.1. Definitions of Principal Quantities 
 

The directional spectral effective emissivity of a non-isothermal cavity is a function of 
the selected reference temperature T0 and is defined as 
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where Le(T) is the spectral radiance of the effective (i.e. the sum of emitted and 
reflected) radiation of an infinitesimal element of the cavity wall with coordinate  and 
temperature T in direction  at wavelength ;  ref

bb TL ,  is the spectral radiance of a 

perfect blackbody determined by Planck’s law. 
 
An important special case of the local directional effective emissivity is the local normal 
effective emissivity  refne Tr ,,,  . It corresponds to viewing the aperture of an 

axisymmetric cavity along an infinitely thin ray passing parallel to the cavity axis and 
crossing the aperture plane in the point with radial coordinate r.  
 
The average normal effective emissivity ne, , which is used in typical calibration 

arrangements, can be considered as an averaging on cavity aperture: 
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where Ra is the radius of cavity aperture. 
 
By analogy, the average directional and conical effective emissivities can be introduced 
(see. Fig. 2).  
 

A B 

C D 

E F 

Fig. 2. Various types of effective emissivity (EE): A – local normal EE; B – local 
directional EE; C – average normal EE; D – average directional EE; E, F – conical EEs. 

 

 
3.2. Method and Software for Effective Emissivity Modeling 

 
The computation of effective emissivity for blackbody under development was performed 
by means of STEEP3 [24] modeling software, based on the Monte Carlo algorithm [25-
28] that briefly depicted below. 
 
The analysis is restricted to the case of the uniform specular-diffuse reflection model that 
assumes: 

(i) The surface emits diffusely (according to Lambert’s law), with an emissivity 
ε.        

(ii) The hemispherical reflectance ρ = 1 – ε does not depend on incidence angle 
and is a sum of two components – specular ρs and diffuse ρd. 

(iii) The surface diffusity defined as D = ρd/ρ does not depend on incidence angle. 
 
Moreover, the validity of ray optics approximation is assumed, diffraction effects are 
considered as negligible, and radiation is entirely depolarized due to multiple reflections.  
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The Monte Carlo method of the radiation transfer simulation is based on a ray-tracing 
algorithm. For the calculation of the effective emissivity of the cavity by the Monte Carlo 
method the radiative flux is represented by a large number of rays moving along 
rectilinear trajectories.  The radiation heat transfer inside the cavity is simulated by a 
random Markov’s chain of reflections of these rays with the internal cavity surface. To 
reduce the dispersion of calculation and decrease the computing time, the method of 
statistical weights was used. 
 
For the calculation of the effective emissivity, the optical reciprocity theorem and the 
technique of inverse ray tracing were used. The rays with a statistical weight of unity 
were directed from a point of observation towards the opening of cavity, and their history 
was followed until they escape from the cavity or until their statistical weight became less 
than the given truncation value . The last point of reflection is considered as the point of 
birth of the ray propagating in the inverse direction. 
 
Spectral radiance along the ray exiting from the cavity opening is proportional to 
 

        ...)...),(,(,(, 4332211  kkk TPTPTPTP               (3) 

 
where k,  k and Tk are the spectral emissivity, spectral reflectance and temperature of the 
cavity  wall  at  the point  of  k-th  reflection, respectively;  TP ,  is Planck’s function. 
 
After choosing the reference temperature Tref, it is possible to evaluate the effective 
emissivity of the cavity by following the histories of a large number of rays n, the 
direction of which are chosen randomly following the given conditions of observation: 
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where mi  is the number of reflections in i-th ray trajectory. 
 
We were assumed  = 10-5 and N = 106, what it is ensured the uncertainty of effective 
emissivity calculation e  0.0001.  
 
 

3.3. Background radiation effect 
 
The approximation of isothermal cavity implies non-radiating environment. Real 
ambience has the temperature greater than absolute zero, therefore, must emit thermal 
radiation that irradiates the aperture of a cavity, and can reach the detector after multiple 
reflections inside a cavity. Because the spectral, spatial, and angular distributions of 
background radiation are hard to predict, the simplest case of isotropic blackbody 
radiation that corresponds to an environmental temperature Te is usually considered. It is 
assumed that it is possible to neglect the radiation exchange between cavity and detector, 
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and detector does not distort the isotropy of background radiation. Let us suppose that the 
cavity is isothermal at a reference temperature Tref  and has effective emissivity εe 
determined for a case of non-radiating background and any geometry of cavity radiation 
collecting. The effect of isotropic background at temperature Te can be computed by the 
equation  
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for spectral effective emissivity. Here C2 = 1.43877·10-2 m·K is the second radiation 
constant in Planck’s law. 

Note that spectral effective emissivity becomes wavelength-dependent even for 
isothermal cavity with gray internal surfaces as soon as the temperatures of a cavity and 
an environment are different. The addends in Eqs. (5) (a correction terms for background 
radiation) vanish when . For nonisothermal cavity, due to additivity of radiant 

fluxes, the expressions for correction terms on background radiation remain the same – 
we only must know the effective emissivity of an appropriate isothermal cavity 
determined for non-emitting environment. 

0eT

 
 

3.4. Selection of Cavity Geometry 
 

We have selected a cylindrical shape of a cavity because for this shape, the selected 
method of thermostabilization implements simply by wrapping the tube with liquid agent 
around the cylindrical surface. Due to relatively small FOV (0.012 mrad), the radius R of 
a cavity shouldn’t be significant greater than the aperture radius Ra = 50 mm. We have 
chosen R = 60 mm and cavity depth L = 200 mm. 
 

S 

ft 
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Fig. 3. Geometry of concentric grooves on the bottom of a cavity. 
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It is known that the normal effective emissivity of a cylindrical cavity with a flat bottom 
is sharply decreasing if the surface of a bottom has a specular component of reflection. 
To avoid this effect, we use concentric grooves on cavity bottom. We considered the 
grooves of a trapezoidal profile as depicted in Fig. 3: S = H = 5 mm; fb = ft = 0.2 mm. 
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Fig. 4. Cavity generatrix. 

 
The overall scheme of cavity generatrix is depicted in Fig. 5. For the given FOV, the only 
bottom (excluding its narrow peripheral annulus) is viewable.  
 

 
 

3.5. Results of Monte Carlo Calculations for Isothermal Cavity 
 

 
We have performed the computations of the normal effective emissivities of an 
isothermal cavity depicted in Fig. 4 using STEPP3 software. We have used the limiting 
values of wall emissivity (0.935 and 0.990) and 4 values of wall diffusity. The results of 
computations are presented in Table 2. 
 

Table 2. Normal Effective Emissivity of an Isothermal Cavity 
 

Cavity Wall Diffusity Cavity Wall 
Emissivity 0.7 0.8 0.9 1.0 

0.935 0.9972 0.9976 0.9980 0.9983 
0.990 0.9996 0.9996 0.9997 0.9997 
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4. Steady-State Temperature Distribution 

FEA Analysis 
 
 

4.1. Statement of a Problem 
 
 
It is necessary to evaluate the temperature distribution over internal surface of a cavity. It 
is significantly depends upon design features that determine all heat sources and sinks. 
We have built the simplified thermophysical model of BB100-V1 as it is shown in Fig. 5. 
 

Copper cavity 

Stainless steel holder Thermal Insulation 

Zones of constant temperature (coils of tube with liquid agent) 

Brass thermal link  

 
 

Fig. 5. The simplified thermophysical model of BB100-V1. 
 
 

We have assumed that the temperatures of the edge of stainless-steel holder as well as 
brass thermal link are constant and equal to environmental temperature Te. The heat 
released in ring zones propagates through the copper cavity, brass thermal link and 
stainless-steel holder. The internal surface of a cavity looses the heat due to radiative heat 
transfer through the cavity aperture. We have supposed that there are no conductive heat 
losses through the thermal insulation. 
 
 
 
 
 

 11



© 2005    VIRIAL, INC. 
 

 
4.2. Radiation Losses from Cavity Internal Surface 

 
 
Let us assume that there is no heat exchange among points placed on a cavity internal 
surface due to its very small temperature non-uniformity. Heat flux density that leaves a 
point on a cavity internal surface at temperature T and escapes through the edge cut of a 
stainless-steel hood directly or after one or more reflections is equal  
 

 FTTq e
44   ,                                                 (6) 

 
where ε is the total hemispherical emissivity, σ = 5.6704×10-8 W m-2 K-4 is Stefan-
Boltzmann constant, Te is environmental temperature, F is the resolving view factor 
between that point and hood’s edge cut. 
 
Resolving view factor between surfaces A1 and A2 defines as a ratio of radiant power, 
emitted by A1 to radiant power falling onto A2 directly and after every possible reflection 
from A1 and all intermediate surfaces [29]. 
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Fig. 6. Distribution of resolving view factors along the radius of cavity bottom. 
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In order to compute the resolving view factors from a point on internal cavity wall to the 
edge cut of stainless-steel hood, we used the customized version 4V of STEEP3 program. 
The algorithm employed is based on the calculation of statistical weights of rays, emitted 
by the given point on cavity generatrix and escaped through the hood’s opening. 

 
The computed distribution of resolving view factors along the radius of a cavity bottom is 
presented in Fig. 6. The peaks belong to flat areas in the peaks and valleys of concentric 
grooves, lower plateaus – to internal and external sidehills. The dashed line depicts the 
trend obtained by the moving average method. The distribution of resolving view factors 
along cavity lateral walls and brass tube is shown in Fig. 7. The distributions presented in 
Fig. 6 and Fig. 7 were used for finite-element modeling of steady-state temperature 
distribution along cavity internal surface. 
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Fig. 7. Distribution of resolving view factors along cavity lateral walls and brass tube 
(thermal link). 

 
 
 

4.3. Thermophysical Modeling using ANSYS 8.0 
 

 
We used finite-element program ANSYS 8.0 [30] and thermophysical model depicted in 
Fig. 5 together with the following parameters: 

 Thickness of bottom – 15 mm 
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 Thickness of cylindrical walls and diaphragm – 12 mm 
 Stainless-steel holder thickness – 1 mm 
 Brass heat link thickness – 1 mm 
 Total thickness of black coating and ground – 0.1 mm 
 

We used the following values k of thermal conductivity for materials employed: 
 Copper, kCu = 393 W/(m K) 
 Brass, kBr = 130 W/(m K) 
 Stainless steel, kSS = 15 W/(m K) 
 Black coating and ground, kb = 1 W/(m K) 

 
At the first stage we supposed that the bottom has no grooves. For modeling, we 
employed the multi-layer shell finite elements of triangular shape. Due to axial symmetry 
of a blackbody, we studied only its 30º sector (Fig. 8). The resulting finite element model 
is shown in Fig. 9. 
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Fig. 8. The sectorial shell model of BB100-V1: even numbers of areas (A2 to A16) 
correspond to coils of tube with a liquid agent. 
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Fig. 9. The finite element model of BB100-V1. 
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Fig. 10. Steady-state temperature distribution over cavity internal walls. 
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The computed steady-state temperature distribution over internal cavity walls is depicted 
in Fig. 10, 11, 12, and 13. Temperature of a liquid agent is 350 K, temperature of 
environment is 77 K. Obviously, this is a “worst” case, when the temperature non-
uniformity is greatest. 
 
Finally, we built the solid finite-element model of a “tooth” – selected annular area of a 
grooved bottom. Because the radial temperature gradient along the bottom is negligible 
(about 4 mK, as one can see in Fig. 13), we considered adiabatic the vertical cylindrical 
surfaces in Fig. 14. On the flat and inclined surfaces of a “tooth”, the radiative heat losses 
were determined according to Fig. 6 and Eq. 6. Computed temperature drop (see Fig. 15) 
does not exceed 4 mK. The average temperature of grooved surface differs from 
temperature of liquid agent on approximately 15 mK. 
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Fig. 11. Temperature distribution along cavity internal generatrix and brass tube. 
 

 16



© 2005    VIRIAL, INC. 
 

1

346.5

346.85

347.2

347.55

347.9

348.25

348.6

348.95

349.3

349.65

350

0
26

52
78

104
130

156
182

208
234

260

DIST

BB-100V1 Brass hood; Steady-state temperature distribution                      

FEB  9 2005
17:19:27

POST1

STEP=1
SUB =1
TIME=1
PATH PLOT
A

 
 

Fig. 12. Steady-state temperature distribution along cavity bottom (0<DIST<60 mm) and 
cylindrical wall (60<DIST<260). 
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Fig. 13. Steady-state temperature distribution along cavity bottom (0<DIST<60 mm). 
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Fig. 14. Solid finite-element model of a “tooth”. 
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Fig. 15. Steady-state temperature distribution across the “tooth” on the cavity bottom. 
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5. Evaluation of Thermal Inertia 
Constant 

 
 
At the current stage of design, we can perform only crude estimation of blackbody 
thermal inertia constant (time constant) using the lumped equivalent electric chain 
depicted in Fig. 16.  
 

Ct 

Rtr Rts Rtb 

 
Fig. 16. Equivalent thermal-electric scheme for calculation of time constant. 

 
 

We will define the thermal resistance as 
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where ΔT is a difference of temperatures, Q is a heat flux. 
 
If Ct is the total heat capacity of a blackbody; Rts and Rtb are the thermal resistances due 
to conductive heat losses through the stainless-steel and brass tubes, respectively; Rtr is 
the thermal resistance due to radiative heat losses, then the time constant is determined by 
expression 
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al resistance due to conductive heat losses through the stainless-steel tube is equal 
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 are length, radius, and 

thickness of both brass and stainless-steel tube, respectively.  
 

ean thermal resistance due to radiative heat losses is equal 
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 internal surface, where A = 0.0867 m2 is the total area of cavity .0F 04 is the mean 

alue of resolving view factor on this surface. 
 

 

r cavity is about 1.341×10-3 m . Then the cavity mass is about12 kg, 
nd C  = 4716 J/K. 

he computation by the Eq. 8 – 10 gives the value of τ = 82.5 min. 
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ean temperature T will change according to equation 
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The specific heat capacity of copper at 350 K is 392.6 J/(kg K), density is 8920 kg/m3, 
the volume of coppe 3

a t

 
T
 
Thermal inertia constant τ is the quantity that describes the reaction of a blackb
step change of the temperature of its bound. So, let we have a blackbody with 
temperature T1 and the liquid agent pre-heated up to temperature T0 > T1 for t < 0. Let we 
need to heat up the blackbody up to 350 K. If at the moment of time t = 0 liquid begins
flow from thermostat through the coils wrapped around
m
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ill be about 0.99×(T0 – T1). When T0 < T1, the following 

quation for cooling is in use: 
 

 
When t = τ, the change of temperature will be about 0.632×(T0 – T1). After 5τ, the change
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For example, for T1 = 77 K, T0 = 350 K, at t = τ, the temperature of blackbody will be 
about 249 K. However, if we set T0 = 500 K, the temperature of blackbody at t = τ will be 
about 344 K. 
 
Real thermostatic systems use these relationships and employ the sophisticated 
algorithms to change the liquid agent temperature and minimize the transition time that 
can be significantly less than the thermal inertia constant τ.  

 
 

 
 

6. Monte Carlo Modeling of BB-100V1 
Effective Emissivity 

 
 
We have computed the normal spectral effective emissivities for two limiting values of 
cavity wall emissivity (0.935 and 0.990) and two temperature distributions obtained by 
the FEA for two values of thermostating liquid (350 K and 240 K). The environmental 
temperature in all cases is 77 K; diffusity of cavity walls is 0.7.  
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Fig. 17. Normal spectral effective emissivity of BB100-V1 for 3 temperatures 
distributions; wall emissivity is 0.935 
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The results of computations are depicted in Fig. 17 and Fig. 18. The data analysis and 
numerical experiment additionally performed shown that these values of effective 
emissivity do not change significantly for oblique viewing up to angles of ±4.5º with 
cavity axis. No background radiation effects were detected. 
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Fig. 17. Normal spectral effective emissivity of BB100-V1 for 3 temperatures 
distributions; wall emissivity is 0.990 
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7. BB-100V1 Preliminary Design 

 
 

The drawing of BB100-V1 preliminary design performed with the account of above-
mentioned studies is depicted in Fig. 18. 
 
 

CONCEPTUAL DESIGN
     BB-100 VI

1-Sensors  PRT-100
2-Cooling and heating tube
3-Teflon Spacer
4-Stainless steel tube
5-Thermoshield

 
Fig. 18. BB100-V1 preliminary design. 
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